manifold learning

Manifold learning (dimensionality reduction)

In machine learning, the data are usually represented in a high dimensional feature space. Nevertheless in practice, the data are restricted to a limited area of the feature space. This leads to the well known problem of the curse of dimensionality. The manifold learning techniques, also known as dimensionality reduction aim to find a mapping of the data from the high dimensional feature space to a new space of lower dimensions. The manifold learning methods estimates the geometry of the dataset locally, around each data point.

Syndicate content
ericssonlogo
inocybelogo
canalogo
cienalogo
Civimetrix Telecom logo
mitacslogo
risq logo
nserclogo
promptlogo
ecolepolytechniquelogo
University of Torontologo
frqntlogo
uqlogo
MDEIE logo
cfilogo
ciraiglogo