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Abstract—The fifth-generation (5G) wireless network
provides high-rate, ultra-low latency, and high-reliability
connections that can meet the Industrial Internet of
Things (IIoT) requirements in factory automation,
especially for robot motion control. In this paper,
we address 5G service provisioning in an automated
warehouse scenario, where swarm robotics is controlled
by an industrial controller that provides routing and job
instructions over the 5G network. Leveraging the coordi-
nated multipoint (CoMP), we formulate a time-varying
joint CoMP clustering and 5G ultra-reliable low-latency
communication (URLLC) beamforming design problem
to control the robots that move around the automated
warehouse for goods storage with the planned reference
tracks. Traditional iterative optimization approaches
are impractical in such a dynamic wireless environment
due to high computational time. We propose a game-
theoretic CoMP clustering algorithm combined with
the Proximal Policy Optimization method to obtain a
stationary solution closed to that of the exhaustive
search algorithm considered as the global optimal
solution.

Index Terms—5G network, industrial IoT, URLLC

I. Introduction
The “Fourth Industrial Revolution” is considered the

automation revolution thanks to the innovations of 5G
wireless communications, automation technologies, and
artificial intelligence. Ultra-reliable and low-latency com-
munication (URLLC) service provided by the 5G wireless
network is able to fulfill the stringent requirement of factory
automation, e.g. 10−9 packet loss probability and 99.9999%
availability in motion control and mobile robot use cases
[1]. However, guaranteeing extremely high reliability is
challenging in such a dynamic environment of an automated
warehouse with high mobility automated guided vehicles
(AGV). Coordinated Multi-Point (CoMP) communication
technique [2] that leverages spatial diversity is promising
to achieve URLLC by sending duplicate data streams over
diverse paths [3]. In the automated warehouse scenario,
CoMP can combine the signals from multiple radio base
stations (gNBs) so that highly dependable communications
can be achieved to the moving objects, i.e., AGVs with the
physical obstructions, e.g. warehouse racks and shelves.
Along with the advantages that CoMP can bring to

the wireless network, providing CoMP-enabled URLLC
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wireless communication in the industrial Internet of Things
(IIoT) is especially challenging due to highly dynamic
radio frequency variations from moving objects (such as
AGVs) [3]. Therefore, designing a joint CoMP clustering
and beamforming for transmission between gNBs and
AGVs that satisfies the URLLC constraints becomes more
difficult and significantly different from that in conventional
communication systems.

A. Prior Works
During the past few years, plenty of works try to

coordinate CoMP transmission to improve the URLLC
service in the 5G network via spatial diversity. In [4], Nasir
et al. develop path-following algorithms, which generate a
sequence of improved feasible points to solve the problem
of resource allocation and beamforming design in the short
blocklength regime for URLLC. In [5], Yang et al. formulate
the CoMP-enabled RAN slicing problem for multicast
enhanced mobile broadband (eMBB) and bursty URLLC
service multiplexing as a multi-timescale optimization
problem with a goal of maximizing eMBB and URLLC slice
utilities, subject to total system bandwidth and transmit
power constraints. In [6], Khan et al. propose a novel packet
delivery mechanism, queuing strategy, and time-frequency
resource allocation for CoMP-enabled URLLC in C-RAN
architecture. In [7], the authors investigate the CoMP-
enabled RAN slicing for bursty URLLC and eMBB service
provision by deriving the minimum upper bound of network
bandwidth orchestrated for URLLC traffic transmission
to guarantee the URLLC packet blocking probability. In
[8], the authors propose a heuristic resource allocation
algorithm for CoMP-enabled URLLC with short packet
communication by maximizing the availability of the CoMP.
In [9], the authors propose to use an alternating direction
method of multipliers (ADMM) for solving the resource
optimization problem of the CoMP-enabled RAN slicing
for massive Internet of things (mIoT) and bursty URLLC
service multiplexing.

To overcome the shortcomings of traditional optimization
theory, recent works have proposed to use of deep rein-
forcement learning (DRL) to address important aspects of
CoMP communication such as clustering and beamforming
design. In [10], a hybrid DRL model combining a deep
deterministic policy gradient (DDPG) and a deep double
Q-network (DDQN) model is proposed to cluster the access
points and optimize the beamforming vectors to maximize
the sum rate. The authors in [11] propose a deep Q-network
(DQN)-based algorithm for jointly optimizing beamforming,
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power control, and interference coordination for voice
bearers and data bearers in sub-6 GHz and millimeter-
wave in 5G wireless network. In [12] the authors propose a
distributed dynamic downlink-beamforming coordination
algorithm based on the DQN method to improve the
system capacity of this multi-cell multi-input single-output
(MISO) interference channel. In [13], a multi-agent RL-
based method is proposed for solving the problem of user-
centric transmission/reception point (TRP)-grouping and
user-association in joint transmission aided coordinated
multipoint (CoMP) technique.

The power of game theory in solving many engineering
problems has been proven. Therefore, combining reinforce-
ment learning and game theory has recently attracted the
attention of scholars [14], [15]. Shi et al. [14] propose a
combination of the mean-field game (MFG) and DRL in
which a DRL agent learns with the guidance of the Nash
equilibrium solved by the MFG. The trust region policy
optimization (TRPO) is applied to obtain the optimal
solution to the problem modeled by MFG in [15]. Different
from the existing works considering the combination of
DRL and game theory, we propose a distributed framework
in which the players of the game (i.e., AGVs) use the actions
of the agents of the DRL (i.e., gNBs) to obtain a Nash
equilibrium. In turn, the output of the game, i.e., the Nash
equilibrium, is used as a network state to train the agents
of the DRL model.

B. Motivation and Contribution
Most existing works which employ traditional iterative

optimization approaches are unable to handle the time-
varying dynamic environment with high mobility of the
network entities which is the case in this paper. Traditional
approaches can guarantee convergence to a locally optimal
solution at the cost of complexity and computation time,
which is not compatible with mission-critical applications.
To the best of our knowledge, this is the first work
that combines DRL and game theory to solve the high
complexity problem of joint beamforming design and CoMP
clustering in IIoT. In this paper, we propose a distributed
low complexity game-theoretic CoMP clustering algorithm
combined with the Proximal Policy Optimization (PPO)
method to obtain an optimal solution for beamforming
design for URLLC transmission between the gNBs and the
AGVs in a highly dynamic environment of an automated
warehouse application presented in Fig. 1. The main
contributions of this paper can be summarized as follows:
• We formulate the time-varying problem of joint CoMP
clustering and beamforming design for 5G URLLC
transmission in industrial automation applications.
The wireless channel condition is highly dynamic due
to the high mobility of the AGVs in an automated
warehouse scenario. Therefore, the traditional opti-
mization approach is unable to handle the formulated
problem in such a dynamic environment.

• We propose a multi-agent Proximal Policy Optimiza-
tion (PPO) based algorithm to obtain an optimal

fronthaul

Figure 1: CoMP in factory automation.

policy of the beamforming design for the transmission
of the gNBs.

• We then propose a low complexity game-theoretic
CoMP clustering algorithm that uses the actions of
the multi-agent PPO-based algorithm to obtain a Nash
equilibrium of the formulated CoMP clustering game
among AGVs. In turn, the Nash equilibrium of the
CoMP clustering game will be used as a system state
to train the agents of the PPO-based algorithm.

• The intensive simulation results demonstrate the
effectiveness of our proposed framework in handling
the interference caused by the increasing number of
AGVs in the network.

The rest of the paper is organized as follows: Section
II presents the system model and problem formulation.
Section III presents an approach for user-centric CoMP
clustering and the problem transformation. Section IV
introduces the Proximal Policy Optimization algorithm
followed by Section V presents a game theoretic approach
for CoMP clustering. Section VI presents simulation results.
Finally, Section VII concludes the paper.

II. System Model and Problem Formulation
We consider an automated warehouse IIoT network with

a set of B radio base stations (gNodeBs or gNBs) denoted
as B, each gNB with M -antennas, and a set of K single-
antenna AGVs denoted as K. The AGVs move around
the warehouse for goods storage with planned reference
tracks (Fig. 2). Each AGV traces its planned reference
track. Each AGV can be served by a set of Bk[t] < B
gNBs at time t. The set Bk ⊂ B consisting of Bk gNBs
is the CoMP cluster of AGV k, represents the minimum
number of gNBs which can provide 5G communications
with the required reliability to AGV k. Note that, these
CoMP clusters can be overlapped in which a gNB can be
in different clusters that serve different AGVs.

Moreover, we denote Kj ⊂ K as the set of AGVs that are
served by gNB j. All gNBs are connected to a single CoMP
server over optical fiber fronthaul links. The CoMP enables
the distributed gNBs to collaborate and simultaneously
serve all AGVs within the warehouse area. We assume all
the gNBs are deployed on the ceiling of the warehouse.
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Figure 2: System model.

Let qgNB,j = [xgNB,j , ygNB,j ] denotes the coordinate of the
gNB j and zgNB,j is the height of the gNB j.
The reference track is defined for each AGV k at

each time step t as Xk[t] = (qk[t], θk[t]) where qk[t] =
[xk[t], yk[t]] represents the spatial coordinates, and θk[t]
is the orientation of the AGV. The control input uk[t] =
{vk[t], ωk[t]} sent from the controller implemented in the
CoMP server to the k-th AGV consists of an intended
translational velocity vk[t] and rotational velocity ωk[t] at
each time instant t. The AGV kinematic can be expressed
as follows:

Xk[t+ 1] = Xk[t] + ∆TΘk[t]uk[t], (1)

where ∆T is the time slot duration and Θk[t] is given by:

Θk[t] =

 cos θk[t]
sin θk[t]

0

0
0
1

 . (2)

The distance between the gNB j and AGV k at time
instant t is

dk,j [t] =
√∥∥qgNB,j − qk[t]

∥∥2 + z2
gNB,j (3)

The real-time position of the AGVs can be tracked by 5G
positioning techniques such as Downlink-Time Difference
Of Arrival (DL-TDOA), Downlink-Angle Of Departure
(DL-AoD), Uplink-Relative Time Of Arrival (UL-RTOA),
Uplink-Angle of Arrival (UL-AoA), etc [16].

A. Communication Model
In reality, the channel state information (CSI) can be

estimated by the CoMP through training the pilot se-
quences. Since the moving distance of an AGV in each time
slot is substantially much smaller than the communication
coverage of a gNB, we assume that CSI remains constant
(fixed) within a slot but can vary across different time slots.
Denote wk,j as the transmit beamformer for the AGV k

from the gNB j. Let sk denote the complex data symbol
for the AGV k and E

[
|sk|2

]
= 1, and σk ∼ CN (0, σ2

0) is
the additive white Gaussian noise (AWGN) at the AGV k.
The received signal yk at AGV k can be expressed as1

yk =
Bk∑
j=1

hHk,jwk,jsk︸ ︷︷ ︸
Desired signal

+
K∑
k′ 6=k

Bk′∑
j=1

hHk,jwk′,jsk′︸ ︷︷ ︸
Interference

+σk, (4)

where hk,j ∈ CM×1 denotes the time-varying channel
from the gNB j to the AGV k, and hk,j = √

gk,jh̃k,j
where gk,j accounts for the distance-based large-scale fading
including path-loss component and shadow fading, and h̃k,j
is the small-scale fading vector associated with the channels
between the gNB j and the AGV k. The large-scale fading
channel gain gk,j between the gNB j and the AGV k can
be expressed as:

gk,j =
(

c

4πfc

)2(
dk,j
d0

)−αg
, (5)

where fc is the carrier frequency, c is the speed of light,
dk,j is the distance between the gNB j and the AGV k,
d0 is a far field reference distance, and αg is the path-loss
exponent (αg ∈ [2, 6]). We assume the small-scale fading
from the gNB and the AGV follows the Nakagami-m fading
model [17]. The probability density function of random
variable h̃(l)

k,j ∈ h̃k,j , the small-scale fading channel gain
between the l-th antenna of eNB j and AGV k, can be
expressed as [17]:

f(z,m) = 2mm

Γ(m)Ωm z
2m−1 exp

(
− m

Ω z2
)
, (6)

where m is the fading parameter, Ω = E
[
|h̃(l)
k,j |2

]
, and

Γ(.) is the Gamma function. We assume that the CoMP
server has knowledge of the instantaneous channel vectors
{hk,j ,∀k ∈ K,∀j ∈ B}.
The signal-to-interference-plus-noise ratio (SINR) and

the Shannon achievable rate at the AGV k when using
CoMP are given by [2]:

γk(wk,j ,hk,j) =

∣∣∣∣∑Bk
j=1 h

H
k,jwk,j

∣∣∣∣2∑K
k′ 6=k

∣∣∣∣∑Bk′
j=1 h

H
k,jwk′,j

∣∣∣∣2 + σ2
k

, (7)

R̃k(wk,j ,hk,j) = log2

(
1 + γk(wk,j ,hk,j)

)
. (8)

The maximum transmission rate to transmit Dk bits
over nk complex symbols in finite blocklength regime can
be accurately approximated as [18]:

Rk(wk,j ,hk,j) = R̃k(wk,j ,hk,j)−
√
V

nk

Q−1(εk)
ln(2) ≥ Dk

nk
,

(9)
where εk is the decoding error probability, Q(x) =

1√
2π

∫∞
x
e−

u2
2 du and Q−1 is the inverse of Q.

1xH is denoted the conjugate transpose operator.
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The achievable decoding error probability of the AGV k
in terms of γk and nk can be expressed as follows:

εk(wk,j ,hk,j) ≤ Q

 ln(2)
(
R̃k(wk,j ,hk,j)− Dk

nk

)
√

V
nk

 .

(10)
where V = 1− 1

(1+γk)2 is the channel dispersion. We assume
that the packet size Dk and complex symbol nk are the
same for all gNBs in the set Bk corresponding to the AGV
k.
From (10), it can be seen that, when the SINR γk > 5,

the channel dispersion V can be accurately approximated
by one V ≈ 1, then the achievable decoding error proba-
bility can be rewritten as:

εk(wk,j ,hk,j) ≤ Q
(

ln(2)
√
nk

(
R̃k(wk,j ,hk,j)−

Dk

nk

))
.

(11)
In low SINR regime (i.e., γk < 5), equation (11) can
be considered the upper bound of the decoding error
probability.

According to (10) and (7), the mathematical expression
of the required beamformers {wk,j} from the gNBs to
AGV k that satisfies the decoding error probability εk
requirements can be written as

γk(wk,j ,hk,j) ≥ γthk (εk), (12)

where the SINR threshold γthk is defined as follows:

γthk (εk) = exp
(
Dk ln(2)
nk

+
√
V

nk
Q−1(εk)

)
− 1. (13)

B. Problem Formulation
At each time instant, depending on the real-time posi-

tion {Xk[t]} of the AGVs, the CoMP server dynamically
performs the CoMP clustering by assigning the set Bk
gNBs from the available B gNBs to each AGV. Then the
corresponding optimal beamforming vectors are computed
so that the SINR γk of the AGV k meets the ultra-reliability
requirement. We consider the joint problem of CoMP
clustering and beamforming design with the objective of
sum-rate maximization for all AGVs subject to the URLLC
constraint. Specifically, the joint problem in time slot t can
be formulated as follows:
P1A:

max
{Bk},{wk,j}

∑
k∈K

Rk(wk,j [t],hk,j [t]) (14a)

subject to: γk(wk,j ,hk,j) ≥ γthk (εk), ∀k ∈ K, (14b)∑
k∈Kj

‖wk,j [t]‖2 ≤ Pj , ∀j ∈ B, (14c)

Bk[t] ⊂ B, ∀k ∈ K. (14d)

Constraint (14b) guarantees the reliability communication
of AGV k, whereas (14c) sets a constraint on the total
transmit power of gNB j. It can be seen that the problem

P1A in (14) is non-convex combinatorial due to the non-
convex objective function (14a), the URLLC constraint
(14b), and the combinatorial constraint (14d).

We consider a second objective of max-min rate fairness
for all AGVs subject to the URLLC constraint as follows:
P1B:

max
{Bk},{wk,j}

min
k∈K

Rk(wk,j [t],hk,j [t]) (15a)

subject to: γk(wk,j ,hk,j) ≥ γthk (εk), ∀k ∈ K, (15b)∑
k∈Kj

‖wk,j [t]‖2 ≤ Pj , ∀j ∈ B, (15c)

Bk[t] ⊂ B, ∀k ∈ K. (15d)

The max-min rate fairness in P1B improves the perfor-
mance of the worst AGVs at the cost of total URLLC
rate degradation, while the sum-rate maximization in
P1A optimizes the total URLLC rate. Although max-min
rate optimization can guarantee some fairness for users,
it may not maximize the rate for all users. In practice,
sum-rate maximization can be applied to the use-cases
that require a high data rate for all users, while max-min
rate optimization is rather applicable in the applications
where users do not have minimum rate requirements. In
other words, the max-min rate scheme is appropriate to
reduce congestion in heavy traffic applications. For example,
the AGVs have to perform compute-intensive tasks while
suffering heavy traffic which can cause congestion in the
network. In general, these two objective functions define
the trade-offs between the network throughput and fairness.
Therefore, they can be selected by the administrator
depending on the use-case applications.

III. User-Centric CoMP Clustering
A. Problem Transformation
The beamformer variable of all gNBs that transmit to

AGV k in cluster Bk Wk = {wk,j , j ∈ Bk} is a matrix
of [M × |Bk|] continuous complex variables. Therefore, it
is challenging to design joint clustering and beamforming
solutions for all AGVs because these solutions consist of
multiple matrices of continuous complex variables. In this
paper, we propose using the codebook technique [11], [12],
[19] so that the DRL agents can learn the transmit power
and beam direction from a codebook instead of learning
all the beamformer matrices for all AGVs.

The beamformer vector wk,j from gNB j to AGV k can
be decomposed into two separate parts as follows [12]:

wk,j [t] =
√
pk,j [t]w̄k,j [t], (16)

where pk,j [t] = ‖wk,j [t]‖2 denotes the transmit power of
gNB j to AGV k at time slot t that satisfies constraint
(14c), and w̄k,j [t] represents the beam direction of the
transmit beamformer wk,j [t]. The beam direction vector
w̄k,j [t] represents the degree of angles of the transmit
beams with values in the range of [0, 2π).

We consider a codebook C = [cq] ∈ CM×Qcode composed
of Qcode code vector cq ∈ CM×1. Each column of C is a
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code that specifies a beam direction. The element of the
codebook matrix is designed as follows [12]

cm,q = 1√
M

exp
(
i
2π
Φ

⌊
mmod(q + Qcode

2 , Qcode)
Qcode/Φ

⌋)
,

(17)
where cm,q refers to the phase shift of the nth antenna
element in the qth code, Φ denotes the number of available
phase values for each antenna element, and b.c and mod(.)
represent the floor and modulo operations, respectively.

The problem P1A in (14) can be rewritten as follows:
P2A:

max
{Bk},{pk,j},{w̄k,j}

∑
k∈K

Rk(wk,j [t],hk,j [t]) (18a)

subject to: γk(wk,j ,hk,j) ≥ γthk (εk), ∀k ∈ K, (18b)∑
k∈Kj

pk,j [t] ≤ Pj ,∀j ∈ B, (18c)

Bk[t] ⊂ B,∀k ∈ K, (18d)
w̄k,j [t] ∈ C,∀k ∈ K,∀j ∈ Bk[t], (18e)

The problem P2A is still difficult to solve because this
kind of problem is NP-hard. To obtain the solution of
problem P2A, we first decompose problem P2A into
two subproblems, i.e., the CoMP clustering subproblem
and beamforming design subproblem. In the following
subsection, we propose a user-centric CoMP clustering
algorithm to obtain the solution for the CoMP clustering
subproblem.

B. User-Centric CoMP Clustering Algorithm
We design a user-centric clustering algorithm where

each AGV k is served by a cluster of Bk gNBs. The
cluster is defined on the reference signal’s received power
(RSRP) from gNBs. Adding gNBs to an existing cluster
will increase the capacity of the cluster at the cost of
additional complexity and signaling overhead. Therefore,
it is important to balance CoMP efficiency and complexity.
To minimize the signaling overhead in the fronthaul and
CoMP server, we want to minimize the cluster size i.e.,
the number of coordinated gNBs per each cluster, while
satisfying the SINR and URLLC constraints of each AGV.
We determine a maximum number of gNBs in a cluster, i.e.,
Bk ≤ Bmax to balance the complexity against the CoMP
efficiency trade-off.

Given the power allocation and codebook selection, the
downlink SIR-protection level between the gNB j and AGV
k is calculated as follows [13]

ρk,j =
E
[∑

i∈Jk,j+

∣∣wk,ihHk,i
∣∣2]

E
[∣∣wk,jhHk,j

∣∣2 +
∑
l∈Jk,j−

∣∣wk,lhHk,l
∣∣2] , (19)

where Jk,j+ and Jk,j− denote the set of gNBs having
higher and lower values of E

[∣∣wk,ihHk,i
∣∣2] , i 6= j than the

gNB j, respectively.
The user-centric CoMP clustering algorithm is presented

in Algorithm 1. Algorithm 1 works as a greedy algorithm

Algorithm 1 User-centric CoMP Clustering
1: Input: {wk,j}, {hk,j} ∀k ∈ K and ∀j ∈ B, Bmax
2: Initialize Bk = ∅ ∀k ∈ K, ρmax
3: for AGV k ∈ K do
4: for gNB j ∈ B do
5: Generate the sorted list Jk,j+ and Jk,j− for each

pair (k, j)
6: Compute the downlink SIR-protection level ρk,j

for each pair (k, j)
7: end for
8: Sort the list {ρk,j} in the descend order.
9: for j ∈ B do
10: Bk ← j if ρk,j ≤ ρmax and Bk ≤ Bmax
11: end for
12: end for
13: Output: {Bk} ∀k ∈ K

in which each AGV greedily searches all gNBs that satisfy
the criteria (line 8-11).

IV. Proximal Policy Optimization

In this section, we propose a DRL-based framework to
obtain the solution for the beamforming design subproblem
by modeling the beamforming design subproblem as a
Markov Decision Process (MDP).

A. System State, Action, and Reward Design

Consider an infinite-horizon discounted MDP, defined by
the tuple (S,A,Pr, r, γ), where S is a finite set of states,
A is a finite set of actions, Pr : S × A × S → R is the
transition probability r : S → R is the reward function, and
γ ∈ (0, 1) is the discount factor. The MDP of beamforming
design can be characterized as follows:
1) The network state at time t is defined by the tuple
S = ({Bk[t− 1]}k∈K, {hk,j [t]}k∈K,j∈B) in which:
• Bk[t− 1],∀k ∈ K is the CoMP clustering at time
t− 1.

• hk,j [t],∀k ∈ K,∀j ∈ B is the channel state of all
AGVs.

2) The action space at time t is the variables of
problem P2A and defined by the tuple A =
({pk,j}k∈K,j∈B, {w̄k,j}k∈K,j∈B). At each time t, the
agent makes a decision of transmit power level and
the corresponding codeword from gBNs to AGVs.

3) The reward is the signal from the environment to tell
the agent how good the action is when it is executed.
In the formulated problem, we aim to maximize the
URLLC rate of the AGVs at each time slot. Naturally,
the agent should take the transmission rates as its
reward. However, if each gNB tries to maximize its
transmission rate by increasing its transmit power, it
can generate significant interference to other AGVs
served by the other gNBs, hence, cannot satisfy the
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URLLC constraint (18b) for all AGVs. Therefore, the
reward for each AGV at time t is designed as follows:

rk[t] =
{
κ1Rk[t]− κ2

∑
j∈Bk Pk,j ,

κ3, if (18b) does not satisfy
(20)

where the second term is the penalty for the gNBs for
the exceeding transmit power in the cluster Bk and κ1
and κ2 are tunable scale coefficients. Moreover, κ3 is
a negative reward to penalize the agent if the URLLC
constraint in (18b) cannot be satisfied. Reward for
each agent j (i.e., gNB j) is formulated as follows:
a) Maximize sum-rate: Reward for each agent j

(i.e., gNB j) is the sum of reward of all the
AGVs served by gNB j:

rj [t] =
∑
k∈Kj

rk[t]. (21)

b) Maximize minimum rate: Reward for each agent
j (i.e., gNB j) is the minimum reward of the
AGVs served by gNB j:

rj [t] = min
k∈Kj

rk[t]. (22)

B. Proximal Policy Optimization
Proximal policy optimization (PPO) [20] is a model-free,

online, on-policy, policy gradient reinforcement learning
method. This algorithm is a type of policy gradient training
that alternates between sampling data through environmen-
tal interaction and optimizing a clipped surrogate objective
function using stochastic gradient descent (SGD).

PPO alternatively constructs an unconstrained surrogate
objective function to remove the incentive for large policy
updates. PPO updates policies by taking multiple steps of
(usually minibatch) SGD to maximize the objective

θ(n+1) = arg max
θ

E
s,a∼πθn

[L(s, a, θk, θ)] , (23)

where L is given in (24). πθ(a|s) is new parameterized
policy trying to seek the optimal parameter vector θ, and
πθn(a|s) is the old policy. Here, ε is a small hyperparameter
presenting how far the new policy is allowed to go from
the old policy. The advantage function Aπθn (s, a) can be
calculated by

Aπθn (s, a) = Qπθn (s, a)− V πθn (s), (27)

where Qπθn (s, a) is the action-value function estimated by
samples, and V πθk (s) is the approximation of the state-
value function.

Qπθn (st, at) = E

[ ∞∑
l=0

γlr(st+l)
]
. (28)

The PPO algorithm is presented in Algorithm 2 and
illustrated in Fig. 3. Each agent (i.e., gNB) collects a
minibatch of transitions by running the current policy
to produce the beamforming actions including the transmit
power and beam direction to its connected AGVs (line 4).
Each agent computes advantage estimates and updates

Algorithm 2 PPO-based beamforming design
1: Initialize policy parameter θ(0), initialize value function

parameters φ(0) for each gNB agent;
2: for n = 0, 1, 2, .. iterations do
3: for each gNG agent do
4: Collect a minibatch of D transitions Dn =

{si, ai, ri, si+1}i=0:D−1 by running policy πθ;
5: Compute advantage estimates Â(st, at) based on

the current value function Vφ(n)(st);
6: Update the policy by maximizing the PPO-clip

objective in (25) where

g(ε, A) =
{

(1 + ε)A A ≥ 0
(1− ε)A A < 0. (29)

7: Fit value function by regression on MSE in (26)
8: end for
9: end for

the policy by maximizing the PPO-clip objective with the
minibatch of transitions (line 5,6). Then, each agent trains
the value functions by regression on mean-squared error
(MSE) (line 7). The steps are repeated until the agents’
policies converge to stationary policies.

V. Game Theoretic-Based CoMP Clustering
The user-centric CoMP clustering Algorithm 1 in Section

III is based on the downlink SIR-protection criteria which
is the maximum average SIR that an AGV can potentially
achieve by removing the number of gNBs with lower
signal strength from the original cluster [13]. However, this
criteria does not consider the interference that affects other
AGVs. This means that the current user-centric clustering
mechanism is selfish and does not guarantee an equilibrium
for all AGVs. The game theoretic-based solution can obtain
equilibria for all AGVs.

There is an increasing interest in applying game theory
to design self-organized, distributed cooperative clustering
[21], [22]. In the game-theoretic approach, a payoff function
is introduced to formulate the CoMP gain and cost trade-off
for forming CoMP clusters.

A. Clustering Game Formulation
We consider a CoMP clustering game in which each

AGV is a player trying to select a set of serving gNBs to
maximize its payoff. We define the action of each player
AGV as follow:

ak,j =
{

1, if AGV k selects gNB j

0, otherwise.

The clustering game can be formulated as follows:

Definition 1. The CoMP clustering game is a tuple G =
(K, {ak,j}, {Pk,j}) where

1) Player set: set of AGV K.
2) Strategy: the strategy of each player is defined as

decisions on choosing a set of gNBs to be served A =
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L(s, a, θk, θ) = min
(
πθ(a|s)
πθn(a|s)A

πθn (s, a), clip
(
πθ(a|s)
πθn(a|s) , 1− ε, 1 + ε

)
Aπθn (s, a)

)
, (24)

θ(n+1) = arg max
θ

1
|Dn|∆T

∑
τ∈Dn

∆T∑
t=0

min
(

πθ(t|st)
πθk(at|st)

Aπθk (st, at), g(ε, Aπθk (st, at))
)

; (25)

φ(n+1) = arg min
φ

1
|Dn|∆T

∑
τ∈Dn

∆T∑
t=0

[
Vφ(n)(s[t])− r(s[t],a[t])

]2
; (26)

sigmoid

Fully connected

Power allocation

Codebook selectionChannel state

at time t

Agent - gNB

User-centric-based 

CoMP clustering

algorithm

Environment

Channel gains

CoMP clustering

at time t-1

Figure 3: Joint CoMP clustering and beamforming design
framework.

{aj}j∈B, aj = {ak,j}k∈K,j∈B to maximize its payoff
function.

3) Payoff function: The payoff of player k is given by

Pk(A) =
∑
j∈B
Pk,j(aj), (30)

Pk,j(aj) =
(
ak,j

∣∣wk,jhHk,j
∣∣2)α∑

l∈K
(
al,j
∣∣wl,jhHl,j

∣∣2)α
− ξak,j

∑
l 6=k∈K

∣∣wk,jhHl,j
∣∣2, (31)

where α and ξ are positive. The first term of the payoff
function presents the percentage allocated power of
gNB j to AGV k. The second term presents the total
interference caused by the transmission from gNB j to
AGV k. The payoff function indicates that the utility
and the total interference each AGV incurs will vary
inversely according to the increasing number of AGVs
connected to the same gNB.

In the following subsections, we transform the game G
into a mean-field game and analyze the Nash equilibrium.

B. Mean Field Approximation for CoMP Clustering

When the system becomes large, traditional game-
theoretic analysis is computationally inefficient because
every single action of every player should be taken into
account. A mean-field game is proposed to tackle the
dimensionality difficulty of the traditional game by taking
the statistical mean-field distribution instead of tracking
the action of each player [23].

Denote the weight by ωk,j = |wk,jhHk,j |2, we define the
mean-field as a weighted α-norm of all the actions as
follows:

mj =
(

1
K

∑
k∈K

(
ωk,jak,j

)α) 1
α

,∀j ∈ B. (32)

The payoff function in (31) can be rewritten as follows:

Pk,j(ak,j ,mj,−k) = 1
K

(
ωk,jak,j
mj

)α
− ξIk,jak,j ,

=
(
ωk,jak,j

)α
(K − 1)mα

j,−k +
(
ωk,jak,j

)α − ξIk,jak,j ,
(33)

where Ik,j =
∑
l 6=k∈K

∣∣wk,jhHl,j
∣∣2, and

mα
j,−k = 1

K − 1
∑
j 6=k

(
ωl,jal,j

)α
= K

K − 1

(
mα
j −

(
ωk,jak,j

)α
K

)
.

(34)

The payoff function of a player has the following properties:
• The payoff function depends only on the player’s action
ak,j and the mean field mj .

• The payoff is discontinuous when there is no connec-
tion to the gNB j, i.e.,

∑
k∈K

(
ωk,jak,j

)α = 0.

C. Equilibrium for Clustering Game

In this section, we characterize the mean-field equilibrium
of the formulated game.

Definition 2. An action vector aNE
j = {aNE

k,j }k∈K is said to
be a Nash equilibrium if no player can improve its payoff by
unilaterally deviating its action from the Nash equilibrium,
such that:

Pk,j(aNE
k,j ,mj,−k) ≥ Pk,j(ak,j ,mj,−k), ak,j ∈ (0, 1),∀k.

Theorem 1. There exists at least one Nash equilibrium
for the game G.

Proof. We consider the case there is at least one AGV
connected to a gNB so that the payoff function is smooth,
continuous and differential. If there is no AGV in the
coverage of an gNB, the game G simply excludes such gNB
out of the strategy of the players, i.e., AGVs.
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The first and second derivative with respect to ak,j can
be written as follows:
∂Pk,j(ak,j ,mj)

∂ak,j

= 1
K

[
αωαk,ja

α−1
k,j m

α
j −

(
ωk,jak,j

)α( α
K a

α−1
k,j

)
m2α
j

]
− ξIk,j

=
αωαk,ja

α−1
k,j

K

[
mα
j −

aαk,j
K

m2α
j

]
− ξIk,j ,

(35)
∂2Pk,j(ak,j ,mj)

∂ak,j2 =
αωαk,j
K

(
mα
j −

aαk,j
K

)
×
[ (α− 1)aα−2

k,j m
2α
j − a

α−1
k,j

2α
K a

α−1
k,j m

α
j

m4α
j

]
=
αωαk,j
K

(
mα
j −

aαk,j
K

)aα−2
k,j

m3α
j

[
(α− 1)mα

j −
2α
K
aαk,j

]
.

(36)
For 0 ≤ α ≤ 1, the second derivative of the payoff function
with respect to ak,j is negative, then the payoff is concave
with respect to own-action ak,j . Therefore, there exists at
least one Nash equilibrium for the game G.

We consider an asymmetric game in which all the players
have asymmetric strategies in equilibrium whenever it
exists. In other words, each AGV has its own clustering
strategy which is different from other AGVs. However,
due to the complicated structure of the payoff function,
deriving a closed-form asymmetric Nash equilibrium is not
trivial. Instead, we propose an iterative form that converges
to mean-field equilibrium. As the number of players
tends to infinity, the mean-field equilibrium asymptotically
converges to Nash equilibrium.

Definition 3. Mean field best response of player k given
the actions of other players given by

Br(ak,j ,mj) = arg max
ak,j

[
1
K

(
ωk,jak,j
mj

)α
− ξIk,jak,j

]
.

(37)

Theorem 2. The iterative best response updates converge
to Nash equilibrium

ak,j(τ + 1) =λ(τ)Br(ak,j(τ),mj(τ)) + (1− λ(τ))ak,j(τ),
(38)

where τ represents the iterations and λ(τ) is a step size and

Br(ak,j(τ),mj(τ)) =
[
K

(
mα
j (τ)−

KξIk,jm2α
j (τ)

αωαk,ja
α−1
k,j (τ)

)] 1
α

,

(39)

mj(τ + 1) =λ(τ)
[
aαk,j(τ)
K

+
KξIk,jm2α

j (τ)
αωαk,ja

α−1
k,j (τ)

] 1
α

+ (1− λ(τ))mj(τ).

(40)

Proof. Since Br(ak,j(τ),mj(τ)) is obtained by setting the
first derivative of the payoff function in (35) equals zero,
then it is the unique solution.

Algorithm 3 Distributed Game-based CoMP Clustering
1: Initialize ak,j(0) and mj(0) ∀k ∈ K, j ∈ B;
2: All gNBs broadcast their beamforming profiles wk,j ;
3: repeat
4: Each AGV k updates its strategy ak,j(τ) according

to (38) and (39);
5: Update mean field according to (40);
6: until |ak,j(τ + 1)− ak,j(τ)| ≤ ε
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Figure 4: CoMP clustering illustration. The dash lines
present the association between the gNBs and the AGVs.
Each AGV has its own CoMP cluster indicated by the set
of associated gNBs.

The iterative best response update (38) has the form of
Ishikawa (Mann) iteration [24]. It was proven in [24] that,
with a vanishing learning rate, i.e., λ(τ) > 0,

∑
τ λ(τ) =∞,

and
∑
τ λ

2(τ) <∞, the iterative best response update (38)
converges strongly to a fixed point which is a unique Nash
equilibrium.

A distributed game-based CoMP clustering is presented
in Algorithm 3. After receiving the beamforming infor-
mation from gNBs, each AGV updates its strategy by
the iterative best response equation and the approximated
mean-field value without knowledge of other AGVs’ actions.
Therefore, this method can reduce the message exchange
overhead and complexity of the algorithm.

D. Complexity
In practice, PPO usually is implemented in Actor-Critic

framework in which the policy network is implemented as
an actor and the value function is implemented as a critic
network. The computational complexity of the PPO-based
algorithm can be calculated based on the complexity related
to the training of the actor and critic neural networks. Let
Lactor and Lcritic denote the number of fully connected
layers of the actor network and critic network, respectively.
The computational complexity of the PPO-based algorithm
is O(

∑Lactor−1
l=0 uactor

l uactor
l+1 +

∑Lcritic−1
l=0 ucritic

l ucritic
l+1 ) [25],

where uactor
l and ucritic

l are the unit numbers in the l-
th layers of actor network and in the l-th layer of critic
network, respectively. Here, uactor

0 and ucritic
0 represent the
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Table I: PPO hyperparameters setting
Parameter Value
Policy network 128, relu, 128, relu, 128, relu, tanh
Value network 128, relu, 128, relu, 128, relu, linear
Step size 1e − 3
Batch size 20
Discount factor 0.995
Epsilon clip 0.1
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Figure 5: Accumulative reward.

input sizes of actor network and critic network, respectively.
The input size of the actor and critic networks in our model
is uactor

0 = ucritic
0 = |B| + M × |B| × |K| where M is the

number of antennas of each gNB, |K| is the number of
AGVs, and |B| is the number of gNBs. It can be seen that,
the computation complexity of the PPO-based algorithm
increases according to the network state, i.e., the number
of AGVs and the number of gNBs.
The computational complexity of Algorithm 3 is a

polynomial function of the number of iterations of the
iterative best response update (38), i.e., O(2T × |K| × |B|)
where T is the number of iterations. It is proved in Theorem
2 that T is finite and in the simulation, we see that the
number of iterations T of the best response update (38) is
around 5.

VI. Simulation Results
A. Simulation Setting

We perform extensive simulations to evaluate the perfor-
mance of our proposed design in terms of the sum URLLC
rate in (9), i.e., the objective of the optimization problem
P1. We vary the number of AGVs in the range of [2-20]
in a 200× 200 meters square automated warehouse. There
are 4 gNBs each with 4 antennas so that they can fully
cover the area and provide service to the AGVs as depicted
in Fig. 4. At the beginning of each episode, the central
controller generates a uniformly distributed destination for
each AGV and the AGV follows the shortest path from
its starting point to its destination. The velocity of each
AGV follows a Gaussian distribution N (5, 2) with a mean
5 m/s and a standard deviation of 2. The carrier frequency

Figure 6: URLLC rate performance during one episode
with around 500 time steps

is 6 GHz with 2 MHz bandwidth. The pathloss exponent is
set to 3.76, the noise power spectral density is set to −174
dBm/Hz and the decoding error probability is set to 10−9.
The data packet size is 20 bytes and channel blocklength
is 512 symbols [26].
To implement the neural networks, we employ the

powerful open-source machine learning framework Py-
Torch version 1.2.0 primarily developed by Facebook’s
AI Research lab. The programming language is Python
3.7 on a desktop computer with hardware configuration:
Intel(R) Core(TM) i7-4790 CPU 3.60GHz and 16GB RAM.
The hyperparameters of our proposed PPO Algorithm
2 is presented in Table I. However they are not chosen
arbitrarily but should be related to the network parameters.
For example, we choose the number of AGVs in the range of
[2-20]. Therefore, the number of hidden layers is relatively
small and is tuned in the range of 1 to 3, and the number
of hidden units is from 64 to 128.
We compare our proposed joint CoMP clustering and

beamforming design scheme (denoted as ‘PPO-Game’) with
four benchmark schemes as follows:
• ‘DDPG-Game’: This baseline is the multi-agent off-
policy deep deterministic policy gradient [25], [27]
combined with the distributed game theoretic based
CoMP clustering Algorithm 3. We investigate whether
on-policy or off-policy gradient method outperforms
in a dynamic environment as in a robotic network.

• ‘PPO-Heuristic’: The user-centric CoMP clustering
in the Algorithm 1 works as a greedy algorithm
where each AGV selfishly searches a set of serving
gNBs satisfies downlink protection criteria and without
considering interference caused to other AGVs.

• ‘EXHAUST’: We use the exhaustive search method
over the Euclidean space K × B × C × P . The ‘EX-
HAUST’ baseline is considered the optimal solution
for the formulated problem.

• ‘RANDOM’: The CoMP clustering, transmit power,
and beam direction (codebook) are randomly selected
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Figure 7: URLLC rate performance.

at each time slot.
The performance of the proposed scheme and the baseline

is evaluated through the following metrics:
1) URLLC rate: This metric is the URLLC rate in (9).
2) Outage probability: This metric is the percentage

of the solutions that do not satisfy the URLLC
constraint (14b) and (18b).

3) Complexity: This metric is the computation complex-
ity of each baseline, and signaling overhead.

Note that, except Fig. 7(e), in all other Figures, the ‘PPO-
Game’ scheme is simulated with the ‘Sum-rate’ objective.

B. Results Analysis
Fig. 4 illustrates the CoMP cluster of each AGV created

by our proposed ‘PPO-Game’ scheme. The set of gNBs
associated with an AGV forms a CoMP cluster of that AGV.
It can be observed that the CoMP cluster of each AGV
is different from the others depending upon the channel
condition and beamforming of each gNB.
1) Convergence Performance: Fig. 5 shows the conver-

gence of the accumulative reward of our proposed scheme
and four benchmark schemes over 200 episodes (each with
hundreds of time steps). The ‘EXHAUST’ scheme achieves
the highest reward while the ‘RANDOM’ experiences the
worst performance. Our proposed scheme ‘PPO-Game’
improves gradually over the episodes and converges to
a fairly stable situation in approximately 150 episodes. It
can be observed that our proposed scheme ‘PPO-Game’

significantly outperforms the ‘PPO-Heuristic’ baseline
and reaches a stable reward close to the ‘EXHAUST’
baseline which is the optimum. Moreover, the ‘DDPG-
Game’ baseline has a similar convergence behavior but
converges to a lower value compared to the ‘PPO-Game’
scheme. In a stable environment, the off-policy DDPG-
based algorithm may outperform the on-policy PPO-based
algorithm due to the sample efficiency characteristic of the
DDPG method. However, in a highly dynamic environment,
which is the case in this paper, the DDPG method may
cause sudden failures due to the exploration noise, resulting
in instabilities during training due to the sensitivity to the
model hyperparameters [28]. Whilst the on-policy PPO
method monotonically improves the policy and guarantees
the new policy after the gradient step is not too different
than before [29].

Fig. 6 shows the sum URLLC rate within an episode
of around 500 time steps. We can observe that there are
some time steps at which the outage happens, i.e., the
AGVs do not satisfy the URLLC constraint (14b) and
(18b) in problem P1A and P2A. Such outage happens
when the AVGs fail to obtain the Nash equilibrium for
the CoMP clustering game, or the PPO agents produce
a beamforming profile that does not satisfy the URLLC
constraint. For example, when an AGV is at the edge of
a gNB’s coverage but not in any other gNBs’ coverage.
The outage performance is analyzed in detail with different
scenarios in Fig 8.
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Figure 8: Outage probability performance.

2) URLLC Rate Performance: Fig. 7(a) depicts the sum
URLLC rates of the five schemes versus the number of
AGVs. The proposed scheme ‘PPO-Game’ baseline can
handle the interference caused by the overlapping clusters.
Therefore, when the number of AGVs increases, the sum
URLLC rate of all AGVs increases. A similar increasing
trend can be seen with the ‘DDPG-Game’ baseline. This
result implies an effective adaptation of the game-theoretic
CoMP clustering according to the increasing number of
AGVs.

Moreover, we can see that when the number of AGVs in
the network is small, the performance gap between PPO
and DDPG methods is relatively small. However, when
the number of AGVs becomes larger, the performance
gap between these two policy gradient methods is more
significant. When the number of AGVs is 12, the ‘PPO-
Game’ achieves a sum URLLC rate of 24.65 bits/s/Hz
compared to 31.2 bits/s/Hz of the ‘EXHAUST’ baseline,
in other words, a performance of approximately 78.5%
compared to the optimal solution. On the other hand, the
‘PPO-Heuristic’ baseline experiences a noticeable decrease
of sum URLLC rate when the number of AGVs increases.
The poor performance of the ‘PPO-Heuristic’ baseline
can be explained by the fact that the interference is not
managed in this clustering algorithm, even though both
‘PPO-Game’ and ‘PPO-Heuristic’ schemes implement the
same PPO-based beamforming algorithm. The user-centric
CoMP clustering in the ‘PPO-Heuristic’ baseline works as
a greedy algorithm in which each AGV greedily searches
all the possible serving gNBs that satisfy the SIR criteria
while ignoring the interference that may cause to the other

AGVs. Therefore, the more AGVs in the network, the more
interference each AGV incurs, and the poorer network is.

Fig. 7(b) plots the sum URLLC rates versus the transmit
power budget. It can be seen that the sum URLLC rates of
the ‘PPO-Game’ scheme, ‘DDPG-Game’ and ‘EXHAUST’
baseline increase along with the increase in the transmit
power budget whereas the sum URLLC rate of the ‘PPO-
Heuristic’ baseline is nearly constant. This result again
confirms the ‘PPO-Game’ scheme can manage interference
better than the ‘PPO-Heuristic’ baseline. When the trans-
mit power increases the interference also increases, hence,
an interference adaptive scheme would be beneficial.
Moreover, it can be observed that when the transmit

power budget is small, the performances of ‘PPO-Game’
and ‘DDPG-Game’ schemes are almost identical. However,
when the transmit power budget increases, the performance
gap between ‘PPO-Game’ and ‘DDPG-Game’ schemes
increase significantly.
In Fig. 7(c), we draw the sum URLLC rates of three

schemes ‘PPO-Game’, ‘DDPG-Game’ and ‘PPO-Heuristic’
versus the decoding error probability ε = εk,∀k. For all con-
sidered schemes, the sum URLLC rate is a monotonically
increasing function of the decoding error probability. This is
because the inverse error functionQ−1(ε) is a monotonically
decreasing function of ε. However, as can be observed, the
impact of the decoding error probability on the URLLC
rate is minor. As we can see in (9), the second term can be
interpreted as a penalty on the rate in order to guarantee
the decoding error probability in a finite blocklength regime.
This penalty is relatively small compared to the Shannon
capacity, i.e., the first term in (9). Moreover, both ‘PPO-
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Game’ and ‘DDPG-Game’ schemes significantly outperform
the ‘PPO-Heuristic’ scheme, and the observed performance
gain is similar to the simulation scenarios with the transmit
power budget (7(b)) and the number of AGVs (7(a)).

Fig. 7(d) presents URLLC rate of each AGV (6 AGVs) in
five schemes. It can be seen that the ‘EXHAUST’ scheme
has the highest URLLC rate for all AGVs compared to all
other schemes and the ‘RANDOM’ baseline has the lowest
URLLC rate for all AGVs. The ‘PPO-Game’ scheme has a
slightly higher URLLC rate than that of the ‘DDPG-Game’
scheme. A significant improvement for all AGVs obtained
by the ‘PPO-Game’ and ‘DDPG-Game’ schemes compared
to the ‘PPO-Heuristic’ scheme can be explained by the
fact that all the AGVs can find the equilibrium in the
CoMP clustering game, and the DRL agents can produce
beamforming profiles that adapt to the changing of the
network state of each AGV.

In Fig. 7(e), we compare the URLLC rate performance
of our proposed ‘PPO-Game’ scheme with two different
objective functions, i.e., maximize sum-rate (denoted as
‘Sum-rate’) and maximize minimum rate (denoted as ‘Max-
min’). It can be seen that with the ‘Max-min’ objective the
proposed ‘PPO-Game’ scheme can achieve better fairness
compared to the ‘Sum-rate’ objective. However, the ‘Sum-
rate’ objective provides a higher total throughput (sum
URLLC rate) of all the AGVs than the ‘Max-min’ objective.
More specifically, the ‘Max-min’ objective achieves a better
URLLC rate for the worst user, i.e., AGV number 3, than
the ‘Sum-rate’ objective, but achieves a lower URLLC rate
for AGVs number 1 and number 5. Note that, with the
equilibrium obtained in the CoMP clustering game our
proposed ‘PPO-Game’ scheme can achieve certain fairness
compared to the ‘EXHAUST’ scheme as shown in Fig. 7(d).
3) Outage Probability Performance: Fig 8(a) shows the

outage probability of all schemes with 5 AGVs for all
episodes. As expected, the ‘EXHAUST’ baseline has the
lowest outage probability at around the median value of
2% while the ‘RANDOM’ baseline has the highest outage
probability at around 78%. The ‘PPO-Game’ scheme
has a lower outage probability than that of the ‘DDPG-
Game’ scheme, at around 9% and 13%, respectively. The
‘PPO-Heuristic’ baseline has the median value of outage
probability at around 30% but it has the widest range of
outage probability value compared to all other schemes,
which is from 0% to 72% with some outliers over 90%. In
the worst case, the ‘PPO-Heuristic’ baseline can obtain a
poor performance as the ‘RANDOM’ baseline. This result
once again confirms our proposed scheme ‘PPO-Game’
can obtain a comparable performance compared to the
exhaustive search algorithm which can be considered an
optimal solution.
Fig. 8(b) compare the maximum continuous outage

duration of five schemes with 10 AGVs for all episodes.
Similarly to the outage probability shown in Fig 8(a), the
‘EXHAUST’ scheme has the lowest outage duration at
around the median value of 1 time step. In contrast, the
‘RANDOM’ baseline has the highest outage duration at
around the median value of 29 time steps. The ‘PPO-

Game’ scheme has the outage duration value close to the
‘EXHAUST’ scheme at around 3 time steps, while the
outage duration of the ‘DDPG-Game’ and ‘PPO-Heuristic’
schemes are two times and five times higher than that of
the ‘PPO-Game’ scheme, respectively. This result again
confirms the performance gap between the ‘PPO-Game’
and ‘DDPG-Game’ schemes is more significant when the
number of AGVs increases.
We investigate the performance in terms of outage

probability of our proposed scheme ‘PPO-Game’ with the
variation of the number of AGVs, decoding error probability
ε, the number of antennas M , and blocklength nk, in
Fig. 8(c), Fig. 8(d), Fig. 8(e), and Fig. 8(f), respectively.
The outage probability values are collected over 300 running
episodes, each episode is with hundreds of time steps.
In Fig. 8(c), it can be observed that with the fixed

wireless resource, i.e., system bandwidth, and a number of
serving gNBs in the network, the more number of AGVs
the more probability the AGVs incur outage. The outage
probability increases gradually with a small number of
AGVs but increases dramatically when the number of AGVs
is sufficiently large. Therefore, to assure the URLLC can
be achieved when a large number of AGVs operates in
the network, it is important to guarantee enough wireless
resources and a number of serving gNBs.
In Fig. 8(d), we plot the outage probability of our

proposed scheme with the different values of the decoding
error probability requirement. As we can see, a tighter
reliability requirement and a higher outage probability
will be obtained. However, the increase of the outage
probability when we decrease the decoding error probability
requirement is not significant. For example, when the
decoding error probability requirement is 10−1, the outage
probability median value is 0.08 or 8% but when the
decoding error probability requirement decreases to 10−10

the outage probability only increases to around 0.09 or 9%.
In Fig. 8(e), the more number of antennas in each gNBs,

the lower outage probability we can achieve. This is because
we can obtain a better SINR value with a higher number
of antennas, therefore, a lower outage probability will be
incurred. A similar trend can be observed in Fig. 8(f) when
we increase the blocklength. A higher blocklength value, a
lower outage probability we can obtain. However, we cannot
increase more blocklength values to achieve a better outage
probability performance since the achievable URLLC rate
will be saturated when the blocklength value exceeds 1024.

4) Complexity Performance: In Fig. 9, we compare the
complexity in terms of computation time in milliseconds
of four schemes except for the ‘RANDOM’ baseline. It
is obvious the ‘EXHAUST’ baseline has the highest com-
plexity compared to all other schemes. The complexity of
the ‘EXHAUST’ baseline increases significantly with the
number of AGVs in the network, whereas the complexities
of the ‘PPO-Game’, ‘DDPG-Game’, and ‘PPO-Heuristic’
schemes increase slightly. For example, when the number
of AGVs is 2, the complexity of the ‘EXHAUST’ baseline is
about 3 times higher than that of the ‘PPO-Game’, ‘DDPG-
Game’, and ‘PPO-Heuristic’ schemes. However, when the
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Figure 10: Signaling overhead

number of AGVs in the network is 12, the complexity of
the ‘EXHAUST’ baseline is about 6 times higher than
the other schemes. Furthermore, while the ‘PPO-Game’
and ‘DDPG-Game’ schemes have similar complexity, the
‘PPO-Heuristic’ scheme has a higher complexity than that
of the ‘PPO-Game’ and ‘DDPG-Game’ schemes. This
result can be explained by the fact that the PPO and
DDPG algorithms are implemented by the actor-critic
method, i.e., using two neural networks to implement the
policy network and value network separately. Moreover, as
stated in Section III.B and Section V.D, we see that the
heuristic user-centric CoMP clustering algorithm (Alg.1)
has a slightly higher complexity than that of the Game-
based CoMP clustering algorithm (Alg.3.)
Fig. 10 depicts the signaling overhead of five schemes.

The signaling overhead is calculated based on the number
of connections between the AGVs and gNBs and the 5G-
RRC (Radio Resource Control) connection setup procedure,
i.e., 8 messages over a 5G-RRC connection [30]. In this
simulation, we omit the messages sent periodically from
AGVs to the gNBs in order to provide information about
the channel state. It can be seen that the ‘RANDOM’
baseline generates high signaling overhead, while the ‘PPO-
Game’ and ‘DDPG-Game’ schemes result in the lowest
signaling overhead. The signaling overhead of the ‘PPO-
Heuristic’ scheme increases more rapidly than the ‘PPO-
Game’ and ‘DDPG-Game’ schemes. This result confirms
the CoMP clustering game is more efficient than the greedy
heuristic user-centric CoMP clustering

VII. Conclusion

This paper has presented the joint CoMP clustering
and beamforming problem for URLLC in an automated
warehouse IIoT network. By combining a low complexity
game-theoretic based CoMP clustering algorithm and the
Proximal Policy Optimization method, we proposed an ef-
fective interference management framework that is suitable
for a dynamic environment and can obtain performance
approximated to the optimum and outperforms the user-
centric CoMP clustering baseline.
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