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Abstract
The high-density computing requirements of machine learning (ML) is a challenging performance bottleneck. Limited by 
the sequential instruction execution system, traditional general purpose processors are not suitable for efficient ML. In this 
work, we present an ML system design methodology based on GPU and FPGA to tackle this problem. The core idea of our 
proposal is when designing an ML platform, we leverage the graphics processing unit (GPU)’s high-density computing to 
perform model training and exploit field programmable gate array (FPGA)’s low-latency to perform model inferencing. 
In between, we define a model converter, which enable transforming the model used by the training module to one that is 
used by inferencing module. We evaluated our approach through two use cases. The first is a handwritten digit recognition 
with convolutional neural network while the second use case is for predicting data center’s power usage effectiveness with 
deep neural network regression algorithm. The experimental results indicate that our solution can take advantages of GPU 
and FPGA’s parallel computing capacity to improve the efficiency of training and inferencing significantly. Meanwhile, the 
solution preserves the accuracy and the mean square error while converting the models between the different frameworks.

Keywords  Machine learning · High performance computing · Heterogeneous computing · Hybrid platform · GPU 
computing · FPGA computing · CNN · DNN · Model converting · PUE

1  Introduction

Recent massive adoption of machine learning applications, 
e.g., prediction of PM2.5 (Ganesh et al. 2018) and mural 
deterioration detection (Huang et al. 2017), are commonly 
based on neural network algorithms such as multilayer 

perceptron (MLP) or CNN. These algorithms, in general, 
have to face substantial training data and consuming much 
time to achieve high accuracy, which is a challenge for GPPs 
(such as CPU) which have few computing cores and execute 
instructions in sequence and thus are worse at high-density 
computing tasks.

Meanwhile, people found that matrix operations almost 
dominate the ML algorithms. We can decompose the com-
plex matrix operations into duplicated and straightforward 
atom operations such as additions and multiplications. Base 
on these facts and previous GPPs’ shortages, people, try to 
find some other hardware devices which have much more 
parallel computing units. GPUs and FPGAs become the 
natural choice as they all have lots of computing units which 
can be re-programmed to work in parallel to increase the 
speed of machine learning.

A classical machine learning process includes two main 
phases, a training phase, and an inferencing phase. During 
the training phase, we pour tens of thousands of training 
data sets into the neural network, and the distance between 
the ground truth value and the prediction value will decrease 
continuously, and when the accuracy reach our goal, we stop 
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the training and get the model. In the inferencing phase, we 
use the previous model to do prediction or estimation. When 
the training and inferencing are not on the same framework, 
for example, training on the Tensorflow and inferencing on 
Caffe, a model converter is necessary to convert the model 
from one framework to another.

Currently, there have been extensive studies on how to 
use only GPUs to accelerate the training phase (Raina et al. 
2009; Bergstra et al. 2011; Sharp 2008; Potluri et al. 2011) 
or how to use only FPGAs to accelerate the inferencing 
phase (Motamedi et al. 2016; Qiu et al. 2016; Nagarajan 
et al. 2011; Aydonat et al. 2017), however, the investiga-
tion on how to combine the GPUs and FPGAs to improve 
the performance of the ML system, as well as what kind 
of hardware devices combination has the best performance 
remain mostly unexplored.

GPUs and FPGAs have different architectures, different 
characteristics, and performance. In our paper, we first ana-
lyzed the advantages and disadvantages when using GPUs 
and FPGAs individually to implement ML’s various compo-
nents, training, and inferencing. Then we gave out our design 
methodology of the ML system, and next, we performed 
two real ML cases, hand digital recognization, and predic-
tion of datacenter’s PUE based on our design methodology 
and tested and compared their performances. In the end, we 
made a discussion about the two experiments’ results and 
gave out our viewpoints.

We organize the rest of our paper as follows: Sect. 2 
presents related work about ML acceleration with different 
kinds of hardware devices. Sect. 3 elaborates the details of 
our hybrid design methodology of the ML system. Sects. 4 
and 5 describe the implementations and performances of 
a CNN digital handwriting classification and a DNN PUE 
prediction based on our design methodology individually. 
Section 6 discusses the two cases’ differences and problems 
we met and gives some explanations. In Sect. 7, we conclude 
our work and briefly discuss our future research plan.

2 � Related work

People have studied ML acceleration with GPU extensively. 
For example, Steinkraus et al. (2005) implemented a full 
connected two layers neural network on ATI Radeon X800 
graphic card and achieved 3× speedup in training and test-
ing. However, they published the paper in 2005; the pri-
mary method of using pixel shaders for ML computation is 
outdated. Similarly, Raina et al. (2009) used GPU to accel-
erate the two unsupervised learning algorithms, includ-
ing deep belief networks (DBNs) and sparse coding. They 
took advantages of GPUs’ global memory to save the data 
and parameters from reducing the transfer time between 
the host machine and the GPU, resulting in performance 

improvement with 70 times faster than a dual-core CPU 
when implementing the DBNs algorithm. Their result dem-
onstrated the potential of acceleration using GPUs, which is 
also confirmed by Potluri et al. (2011) in their work where 
Potluri et al. have used GeForce 9500 GT with 256MB mem-
ory graphic card to speed up GPU-based Universal Machine-
CNN (UM-CNN).

On the adoption of FPGAs to accelerate ML algorithms, 
Motamedi et al. (2016) presented an accelerator for deep 
CNNs. Their accelerator can exploit the available parallel-
ism resources to minimize the execution time, achieving a 
1.9× speedup comparing with the state-of-the-art deep CNN 
accelerator. Aydonat et al. (2017) proposed a new architec-
ture designed with OpenCL. They tried to increase data 
reusing to reduce external memory bandwidth consump-
tion. They also used the Winograd transform to improve the 
FPGAs’ performance. They managed to speed up executing 
the AlexNet CNN benchmark on Intel’s Arria 10 FPGA, 
10× faster than the state-of-the-art on FPGAs and the power 
efficiency is similar to the best implementation of AlexNet 
on TitanX GPU. Nagarajan et al. (2011) has proposed a 
method to implement a multi-dimensional PDF estimation 
algorithm which used Gaussian kernels on the FPGA. They 
used ActiveHDL to develop their platform. It is a hardware 
description language (HDL) and is not so popular and not 
so easy to use. They have got a 20× speedup over a 3.2 GHz 
CPU processor.

To the best of our knowledge, few works combined FPGA 
and GPU to improve the performance of ML systems in the 
past. The first work we found is a FPGA-GPU architecture 
for kernel SVM pedestrian detection by Bauer et al. (2010). 
They used GPU for model training and inferencing and used 
FPGA for feature extraction. In the second work, Zhu et al. 
(2016) have implemented a novel parallel framework for 
neural networks with GPU and FPGA. In their work, the 
neural network processing was decomposed into layers and 
scheduled either on the GPU or FPGA accelerators. Addi-
tionally, in a white paper (Rush et al. 2017), without giving 
detailed information, the authors only gave a hypothesis that 
the combination of CPU, GPU and FPGA would have the 
best performance, but did not give any verification.

In summary, few studies have combined GPUs and 
FPGAs together to implement ML systems, not to mention 
how to convert models from one framework to another.

3 � Design methodologies

3.1 � The whole architecture and workflow

A standard ML system usually has two main modules; one is 
for training model, the other is for inferencing model. Model 
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is the belt between the training module and the inferencing 
module.

Figure 1 presents the whole architecture of our ML sys-
tem, which contains three modules, i.e., training module, 
inferencing module, and converting-model module. We 
implemented the training module on the GPU and built the 
inferencing module on the FPGA. As the FPGA inferencing 
framework is different from the GPU training framework, a 
model converting component is needed.

The entire flow is as follows. The training module loads 
training data from the database first and then uses ML to 
train the model. When the model is ready, the system con-
verts the model from the training framework to the inferenc-
ing framework. In the end, the inferencing module loads the 
model file and the inferencing data and does classification 
or prediction.

3.2 � The GPU training module

The goal of the training phase is to train a model to obtain 
the maximum test accuracy within minimum time. Based on 
two reasons, we select the GPU to implement the training 
module. One reason is, comparing with FPGAs, GPUs often 
own lower price/performance ratio in model training. So 
most research projects select GPUs to do training (Steink-
raus et al. 2005; Raina et al. 2009; Potluri et al. 2011), and 
few projects choose FPGAs to train their model (Zhao et al. 
2016). The other reason is the training module usually has 
complex architectures (forward and backward propagation, 
gradient descent, and so on) and its goal is to get the model, 
once get the model, the training module is useless, so people 
hope to build the training module quickly. On this point, 
GPUs are much easier to program than FPGAs. As GPUs 
have similar instruction system as CPUs, the programs run 
on CPUs can be easily transplanted to GPUs. Furthermore, 
Nvidia corporation has created compute unified device 

architecture (CUDA), which is a GPU computing program 
standard based on the C programming language. Moreo-
ver, many companies have already developed a series of 
frameworks which support CUDA standard and hide CUDA 
implementation details, allowing users to focus on the design 
of ML algorithms. TensorFlow is almost the best one among 
those frameworks, which is developed by Google Brain 
(Google 2019).

Figure 2 is our training module development flow. Firstly 
we use Tensorflow to design our training algorithm, and then 
the Tensorlfow will translate the python code into CUDA 
code, and depart the code into two parts, and put one on 
the GPU to run, put the other on the CPU to execute. After 
finishing GPU computing, the CPU will collect the results 
from the GPU and combine the results.

3.3 � The FPGA inferencing module

The goal of the inferencing phase is to do inferencing with 
minimum latency using the model generated from the train-
ing phase. Unlike training, we often do inferencing multiple 
times. Any small latency of each cycle can accumulate to a 
considerable amount. So it is valuable to reduce the infer-
encing latency.

FPGAs are composed of logical elements (LEs). We just 
programmed these LEs into different hardware electrical 
circuits to meet our requirements. FPGAs’ performances 
are near application-specific integrated circuits (ASICs), 
and they can be reconfigured many times, so their prices 
are usually much higher than ASICs, CPUs, and GPUs. 
In most FPGA designs, there is no fetching and decoding 
instruction system, which make FPGAs are much faster than 
GPUs and CPUs. However, this advantage also becomes the 
FPGAs’disadvantage. As the FPGAs do not have traditional 
instruction system, when we have a new function require-
ment, we can not use the general software programming 

Fig. 1   The architecture of 
heterogeneous machine learning 
system (Liu et al. 2018)
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language such as C to describe it. We have to use some 
HDLs such as Verilog or VHDL (VHSIC very high-speed 
hardware description language) to re-design the whole hard-
ware electrical circuit. The HDLs are similar to the assembly 
languages, and even a small function needs many HDL sen-
tences to describe. If a system is as complex as the DNN’s 
training module, it is hard to use HDLs to implement it, 
which restricts the scales of FPGA designs most.

Now, we can compensate the difficulties of FPGA design 
by using high-level programming languages such as open 
computing language (OpenCL) which do not require too 
much electrical circuits knowledge (Aydonat et al. 2017; 
Zhao et al. 2016; Bettoni et al. 2017; Li et al. 2018). OpenCL 
is a framework for developing programs which can run on 
different heterogeneous platforms such as GPU + CPU or 
FPGA + CPU.

Figure 3 shows its development flow. We can divide the 
development into two phases: the host program and the ker-
nels. When designing the kernels, we should consider how 
to take the full parallel computing capacity of the FPGA. 
The kernels will be synthesized into hardware logic circuits 
and uploaded to the FPGA development board. The host 
program, which is similar to the traditional C program that 
runs on the CPU, is in charge of allocating parallel comput-
ing jobs on the FPGA development board and collecting the 
computing results from the FPGA.

3.4 � Model converter

Training and inferencing are usually put on different plat-
forms, as the training process is high-density computing 
and time-consuming, it needs a large number of comput-
ing resources which is not affordable for most inferenc-
ing platforms. Moreover, the training is usually a one-off 
process in a fixed time. On the contrary, the inferencing 

happened often. So it is a smart and efficient way to use 
different platforms to implement the training and inferenc-
ing phases.

However, generally, different platforms adopt different 
frameworks and model definitions. We can not use the 
model generated by one framework on another directly. 
A model converter which can convert a model from one 
framework to another is needed. Although there are 
already some tools such as MMdnn (Chen et al. 2019) 
for converting the model file among the main frameworks 
(Tensorflow, Caffee, PyTorch and so on), it is useless for 
personal custom-made cases, including our case.

Suppose we should turn a model from the source frame-
work to the target framework. For converting a model, here 
is a general process.

Fig. 2   The flow of the GPU 
training development (Lanfear 
2013)
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Fig. 3   The flow of the FPGA inferencing development (Intel 2018)
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1.	 Understand and capture the date structure of the source 
model completely.

2.	 Understand and capture the model file definition of the 
target framework fully.

3.	 Design a mapping function from the source model 
parameters and weights to the target model.

A model data structure or a model file of machine learn-
ing contains parameters such as weights and biases gener-
ated during the training process, it is the core and goal of 
machine learning, and we save it after training and load it 
before inferencing.

It is not accessible to understand a model data structure 
or file well, as there are many items, such as the number 
of The results of CNN training timelayers, the size of each 
layer, the size of each filter, the activation functions used 
between layers, the order of matrix dimensions, and the flat-
tening ways. In particular, if the model definition is not open 
source, we have to guess the order of matrix dimensions, 
which is almost the hardest part, as the matrices involved 
usually have 4-dimensions, leading to 4 × 3 × 2 × 1 = 24 
possible flattening ways. However, only one way is correct.

When we design the model mapping function, we should 
obey all of the above definitions in the target model, which is 
the secret to guarantee the correctness of model converting.

Figure 4 is a simple model converting example. There are 
two frameworks, 1 and 2, which have the same machine 
learning architectures and the numbers of parameters. 

However, their model’s data structures and flattening ways 

are different. W1 in model 1 is stored as 
[

1 1

0 0

]

 and flattened 

as [1, 1, 0, 0] while W2 in model 2 is stored as 
[

0.1 0.1

0 0

]

 and 

is flattened as [0.1, 0, 0.1, 0]. After understanding the two 
model’s data structures and flattening ways well, it is easy 
to convert the model from framework 1 to framework 2.

In our case, as we implemented the training module on 
the Tensorflow framework, and implemented the inferenc-
ing module on the OpenCL-FPGA framework, we design a 
particular model mapping function which can map weights 
and bias from the Tensorflow framework to the FPGA 
framework.

3.5 � Summary

After analyzing and comparing different hardware device 
combinations, we found the best solution to implement a 
machine learning system that is to use GPU to implement the 
training module and the FPGA to implement the inferencing 
module and add a model converter in charge of converting 
the model from one framework to another.

To verify this design methodology, we implemented two 
ML use cases and tested their performance. The first is a 
CNN for digital hand-writing recognition, the other is a 
DNN regression for estimating the PUE of the data center.

Fig. 4   Schematic of model converting (Liu et al. 2018)
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4 � A case study on digital handwriting 
recognition with CNN classification

4.1 � Experiment environment

The following two cases use the same experiment 
environment.

4.1.1 � Hardware environment

Our devices’ list is shown in Table 1. We use the mother-
board to host every hardware device together. The Titan XP 
graphics card communicates with the host board through 
PCIe gen 3 × 16 (with the bandwidth of 15760 MB/s). The 
Arria 10 development board transfers data to the host board 
by PCIe gen 3 × 8 (with the bandwidth of 7880 MB/s). When 
the amount of training data is huge, GPU cannot load the 
whole data in one-time and has to break the data into many 

small batches, which will lead to transferring data frequently 
between the host and the device.

On the contrary, the data for inferencing is usually small, 
that is no need to transfer data frequently. From this perspec-
tive, the bandwidth becomes a performance bottleneck of the 
system. Therefore, this becomes another reason to use the 
GPU to do the training and the FPGA to do the inferencing.

4.1.2 � Software environment

Table 2 is our software environment. The operating system 
is Ubuntu 16.04. We use the Tensorflow to implement the 
GPU training module and the OpenCL to design the FPGA 
inferencing module.

4.2 � The algorithm of CNN case

Our goal is to verify the performance of the heterogeneous 
machine learning system. We select LeNet-5 and MNIST 
(LeCun et al. 2018) as our algorithm and data set, which 
are not too complicated but enough to show the effects of 
hardware acceleration.

The MNIST is a training dataset for digital handwriting 
recognition. Each example is a pixel value matrix whose size 
is 28 × 28 , and each pixel value’s range is from 0 to 255. In 
our case, for easy processing, we divide the pixel value by 
255 (Fig. 5). MNIST dataset totally includes 55,000 train-
ing examples, 5000 validation examples, and 10,000 test 
examples.

Table 1   Hardware devices list 
(Liu et al. 2018)

Device Type Number

CPU Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50 GHz 1
Memory Samsung DDR4 8 g 4
Solid state disk drive INTEL SSDSC2BB48 480 g 1
Mechanical hard disk drive WDC WD40EFRX-68N 4 TB 1
GPU NVIDIA TITAN Xp 1
FPGA Intel Arria 10 GX FPGA development kit 1

Table 2   Software environment (Liu et al. 2018)

Software Version

Ubuntu 16.04.3 LTS
Python 3.5.2
Tensorflow 1.4.0
Tensorflow-GPU 1.4.0
CUDA 8.0
Intel(R) FPGA SDK for OpenCL 17.1.0 Build 240

Fig. 5   The pixel value matrix 
(Google 2018)
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The LeNet-5 is designed by Yann LeCun for handwrit-
ten and machine-printed character recognition (LeCun et al. 
1998), belongs to CNNs. It has almost all classical CNN 
structures (convolution layers, pooling layers, and full con-
nection layers, and so on) and has high accuracy in digital 
handwriting recognition. Most importantly, it contains a lot 
of high-density computing jobs which are suitable for testing 
the acceleration effects of parallel designs.

Figure 6 is our tailor-made version of LeNet-5 for this 
experiment. It has seven layers in total, including three con-
volution layers, two sub-sampling layers, and two full con-
nection layers. These layers are orderly arranged, as illus-
trated in Fig. 6.

4.3 � The training module of CNN case

4.3.1 � The implementation

Figure 7a is our training phase control flow diagram. It 
includes two main phases, i.e., forward propagation and 
backward propagation. The difference of value calculated 
by the forward propagation and label value is passed into 
the backward propagation to calculate the weights and 
biases of each layer. After several computing loops, the 
difference converges within a permissible range, the train-
ing process terminates. We store weights and bias in a 
model file.

A
INPUT:
1@28x28

C1: feature maps
20@24x24 S2:f. maps

20@12x12

C3: f. maps 
50@8x8

S4: feature 
maps 50@4x4

C5: layer
800

F6: layer
500 OUTPUT:

10

Convolutions 1
Convolutions 2

Flatten

Subsampling 1 Subsampling 2

Full 
Connection 1 

Full 
Connection 2

Fig. 6   The architecture of LeNet-5 improved for experiment (Liu et al. 2018)

Fig. 7   a The control flow of training; b the TensorFlow implementation of the training module (Liu et al. 2018)
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We use NVIDIA Titan Xp graphics card to accelerate the 
training process. The GPU has 3840 CUDA cores which 
can be programmed to do parallel computing. Its floating 
computing performance can reach 12 TFLOPS.

To do the NVIDIA graphics card computing develop-
ment, it should use the CUDA programming language 
mentioned previously. That will mean we should build the 
acceleration kernel from scratch. Thanks to the TensorFlow, 
which packages the CUDA libraries, now we only need to 
focus on designing the architecture. The Fig. 7b is part of 
our TensorFlow implementation code.

4.3.2 � The experiment results

In this experiment, we aim to find a better device for training 
model by comparing the training speed of CPU and GPU.

For achieving this goal, we designed two use cases. One 
only has a CPU-E5-1620, the other has a CPU-E5-1620 and 

a GPU-TitanXp. We chose the same 55,000 training exam-
ples and measured their training time, respectively. We did 
six times the same tests and calculated their average times.

The results are in Table 3. We can conclude that the aver-
age speed of TitanXp is about 8.8× faster than the average 
speed of CPU E5-1620 with the same accuracy. This result 
is similar to Kind (2018) work whose GPU speed is about 
9× faster than CPU.

4.4 � The inferencing module of CNN case

4.4.1 � The implementation

Figure 8a is our inferencing phases control flow. It only has 
forward propagation. It loads the model generated from the 
training module and then does inferencing only with the for-
ward propagation algorithm.

Table 3   The results of CNN training time (Liu et al. 2018)

Experiments CPU-E5-1620 GPU-TitanXp Accelerate times

Training time (s) Accuracy (%) Training time (s) Accuracy (%) Acceleration (GPU/CPU)

1 448.60 98.70 50.61 98.80 8.86
2 447.79 98.88 51.17 98.58 8.75
3 448.35 98.90 50.73 98.80 8.84
4 448.62 98.94 50.46 98.88 8.89
5 447.62 98.59 50.94 98.82 8.79
6 447.88 98.94 50.78 98.79 8.82
Average 448.10 98.80 50.80 98.80 8.80

Fig. 8   a The control flow of 
inferencing; b the kernels of 
OpenCL implementation (Liu 
et al. 2018)
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We use Intel Arria 10 FPGA development board to imple-
ment the inferencing module. Arria 10 is made by Intel with 
the 20 nm process. It has high performance and low power 
consumption. Although its 1.5 TFLOPS is still slower than 
TITAN Xp 12 TFLOPS, its power consumption below 
100 W is much better than TITAN Xp 250 W.

We use OpenCL for FPGA development. Its develop-
ment includes two parts: a host program and kernels. The 
host program runs on the CPU, and the kernels run on the 
FPGA. Figure 8b shows our kernel events implemented with 
OpenCL. It has eight kernel events which map with the con-
trol flow’s eight functions. These logical kernel events will 
be programmed on the FPGA and executed one by one to 
implement the inferencing function.

4.4.2 � The experiment results

In this experiment, we use the CPU, GPU, and FPGA to 
execute the same inferencing algorithm with the same model 
and compare their efficiencies with each other.

First, we measure the time of inferencing 10,000 images 
on the CPU, GPU, and FPGA devices, respectively. Then we 
execute the measurement six times and calculate the aver-
age time of inferencing 10,000 images on different hardware 
devices.

The results of the experiments are presented in Table 4. 
From the table, we can see that the average speed of Arria 
10 is about 10.9 times faster than the average rate of CPU 
E5-1620 and is about 7.1 times faster than the GPU TitanXp.

4.5 � The model converter of CNN case

4.5.1 � The experiment results

For verifying our model converter works well, we conduct 
two experiments on the same 10K MNIST test examples 
respectively. In Experiment_1, we only test FPGA inferenc-
ing accuracy with the original model while in Experiment_2, 
and we change CNN’s configuration, retrain the model by 

TensorFlow with GPU, convert the model to the FPGA and 
then test the inferencing accuracy on FPGA and Tensorflow 
respectively.

Table 5 presents the statistics of accuracy collected from 
the two experiments. The Experiment_2’s accuracy is better 
than Experiment_1’s. In Experiment_2, the FPGA has pre-
served the same precision as the TensorFlow, which proved 
our model convert successfully.

5 � A case study on data center PUE with DNN 
regression

5.1 � The overview of the use case

To fully evaluate our hybrid design methodology of the ML 
system, we select another algorithm to implement and test 
its performance on CPU, GPU, and FPGA. This algorithm 
belongs to one of DNN regressions, and we use it for esti-
mating the PUE of Data Center (DC).

A DC is a physical space that groups together IT systems 
(servers, storage, and so on), mechanical systems [computer 
room air conditioner (CRACs), chillers, and so on], and elec-
trical systems [uninterruptible power supply (UPS), power 
distribution unit (PDU), transformers, and so on], for storing, 
processing and protecting data. The energy consumption takes 
the main part of operating a DC and can reach up to 75% of 
operating costs, which is one of the major reasons why indus-
trial and environmental organizations have focused on improv-
ing energy performance while ensuring continuity of services. 
For this reason, many energy-related metrics are defined, such 
as PUE. The Eq. (1) is the definition of the PUE (David Wright 

Table 4   Results of 10,000 image inferencing time

Experiments CPU-E5-1620 GPU-TitanXp FPGA-Arria10

Inferencing time (us) Inferencing time (us) Acceleration 
(GPU/CPU)

Inferencing 
time (us)

Acceleration 
(FPGA/CPU)

Acceleration 
(FPGA/GPU)

1 14.881587 9.713557 1.5320 1.38002 10.8 7.0
2 14.995880 9.202130 1.6296 1.34051 11.2 6.9
3 14.685811 9.419498 1.5591 1.36456 10.8 6.9
4 14.785795 9.762074 1.5146 1.34304 11.0 7.3
5 15.064704 9.854970 1.5286 1.32339 11.4 7.4
6 14.307688 9.440861 1.5155 1.37961 10.4 6.8
Average 14.786910 9.565520 1.5459 1.35520 10.9 7.1

Table 5   Converting model experiments of CNN

Experiment_1 Accuracy(%) Experiment_2 Accuracy(%)

N/A N/A TensorFlow 99.13
FPGA 99.05 FPGA 99.13
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2017). The IT equipment power includes all the actual load of 
IT equipment such as workstations, servers, storage, switches, 
printers, and other service delivery equipment (David Wright 
2017):

The PUE stands for how energy is efficiently used to keep 
the DCs running without service interruption. It is used to 
evaluate over a year the total amount of energy consumed 
by the DC, compared to the amount of energy necessary for 
the operation of the IT equipment. The closer the result is 
to 1.0, the less power the non-IT equipment consumes, and 
the more it is considered “eco-responsible”.

Moreover, the interactions of DC systems are complicated. 
According to Ounifi et al. (2018)’s work, the DC systems (IT, 
electrical and mechanical systems) interactions and the differ-
ent feedback loops make it difficult to estimate and predict the 
DCs’ energy efficiency accurately.

To capture such complexities, we try to find an estimation 
model to calculate the PUE metric values with the help of 
DNN.

DNN borrowed the concept of the deep neural network of 
the brain and will mainly analyze and process the input data 
through a succession of several neurons that take the input sig-
nals from the previous neurons. DNNs are good at modeling 
non-linearity and have characteristics such as the ability to 
model real-time operation and fault tolerance.

In this case study, we will try to use our machine learning 
design methodologies to implement a DNN regression sys-
tem which can train a model for estimating the PUE of a data 
center.

5.2 � The dataset and the DNN regression algorithm 
of DNN case

5.2.1 � The dataset

The dataset we used is from the “ITEA3 RISE SICS Data 
Center” located in Sweden. It has 2881 sets. Each set is col-
lected from the DC every 60 s from 9 a.m. to 9 p.m. contain-
ing 415 kinds of DC features such as fan speed, input DC’s 
power, and average cold Aisle temperature (Ounifi et al. 2018). 
Table 6 shows part of the 415 features. Besides, the dataset 
also has a time series column and a ground truth PUE col-
umn. So our working dataset is a 2881 × 417 matrix. We apply 
cross-validation by dividing the 2881 data sets into two parts: 
2656 for training sets, and 225 for test sets.

(1)PUE =
Total data center power

IT equipment power
.

5.2.2 � The architecture of DNN regression algorithm

According to the structure of Sect. 5.2.1’s data sets, we 
design a tailor-made version of DNN regression which is 
composed of one input layer, five hidden layers and one out-
put layer. The details architecture of the five hidden layers 
is as follows.

–	 Input layer: 415 neurons.
–	 Full connected layer 1: 512 neurons.
–	 Activation function: Relu.
–	 Full connected layer 2: 1024 neurons.
–	 Activation function: Relu.
–	 Full connected layer 3: 1024 neurons.
–	 Activation function: Relu.
–	 Full connected layer 4: 1024 neurons.
–	 Activation function: Relu.
–	 Full connected layer 5: 512 neurons.
–	 Activation function: Relu.
–	 Output layer: 1 neuron.

And all these have been shown on the Fig. 9.

5.3 � The training module of DNN case

5.3.1 � The implementation

Figure 10a is our training control flow which is similar to 
Fig. 7a. It includes two main phases, i.e., forward propagation 
and backward propagation. The difference between CNN case 
and DNN case is the DNN case has no convolutional layers, 

Table 6   A part of selected DC features of the ITEA3 RISE Sics DC

DC features Units

Indoor/outdoor temperature ◦C

Input data center power Mw
Whole data center humidity %
Energy consumption/rack Mw
Workload (electrical)/server Mw
Workload (CPU usage)/server Mgbit
Power consumption after the PDU Mw
Average cold Aisle temperature ◦C

Fan speed RPM
Fan power Kw
CRAC fan power Kw
Power used by chilled liquid Kw
Chilled water entering temperature ◦C

CRAC energy consumption KVA
Total rack IT load KVA
Hot Aisle temperature ◦C

hline Outside air dry bulb temperature ◦C
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and pooling layers and the cost function is mean square error 
(MSE) which defined in Eq. (2) instead of mean cross entropy 
(MCE). After several computing loops, the MSE will converge 
within a permissible range, the training process terminates. We 
will store the final weights and bias in a particular model file:

where yi is the real output, y′
i
 is the calculated output, and n 

is the number of the input data. We still use Tensorflow to 

(2)MSE =
1

n

n
∑

i=1

(yi − y�
i
)2,

implement this training part. Figure 7b is part of our Ten-
sorFlow code.

5.3.2 � The experiment results

During this experiment, we run the same DNN regression 
training program with the same training dataset on GPU-
TitanXp and CPU-E5-1620 respectively and then measure 
their MSEs and execution time.

Figure 11 is the result that we use the model trained 
by GPU and the model trained by the CPU to do PUE 

Fig. 9   DNN proposed model

Fig. 10   a The control flow of DNN training; b the TensorFlow implementation of the DNN training module
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inferencing on the same test set. They look almost the same. 
They have the same MSE: 0.000029. However, their execu-
tion times are different. Table 7 shows that the GPU’s train-
ing speed is about 12.4× faster than the CPU’s.

5.4 � The inferencing module of DNN case

5.4.1 � The implementation

Figure 12a is our inferencing phases control flow, which 
only has two operations, full connecting and Relu. It loads 
the model generated from the training phase and then does 
inferencing only with the forward propagation algorithm.

We also use OpenCL for FPGA design. Like GPUs, the 
process of FPGA development has two parts: a host program 
and kernels. The host program which runs on the CPU is in 
charge of loading datasets and model, allocating computing 
jobs on the FPGA and collecting the results from the FPGA. 
The kernels run on the FPGA are the primary computing 
acceleration part.

Fig. 11   The comparison of GPU-model and CPU-model inferencing 
results

Table 7   The DNN training time Experiments CPU-E5-1620 GPU-TitanXp Accelerate times

Training time (s) MSE (%) Training time (s) MSE (%) Acceleration (GPU/CPU)

1 154.36 0.000029 12.14 0.000029 12.72
2 154.58 0.000029 12.38 0.000028 12.48
3 154.66 0.000029 12.52 0.000029 12.35
4 154.74 0.000029 12.40 0.000029 12.48
5 154.49 0.000029 12.68 0.000029 12.12
6 154.78 0.000029 12.73 0.000029 12.16
Average 154.60 0.000029 12.50 0.000029 12.40

Fig. 12   a The control flow of 
DNN inferencing; b the kernels 
of OpenCL DNN implementa-
tion
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Figure 12b shows our kernel events implemented with 
OpenCL. It has 11 kernel events which map with the con-
trol flow’s 11 functions. These logical kernel events will 
be programmed on the FPGA and executed one by one to 
implement the inferencing function.

5.4.2 � The experiment results

Similar to the previous use case, we use the CPU, GPU, and 
FPGA to execute the same inferencing algorithm with the 
same model and compare their inferencing times with each 
other. First, we measure the time of inferencing 225 sets on 
the CPU, GPU, and FPGA devices, respectively. Then we 
execute the measurement six times and calculate the average 
time of inferencing 225 sets on different hardware devices.

The results of the experiments are presented in Table 8. 
From the table, we can see that the average speed of FPGA 
Arria-10 is about 13.6× times faster than the CPU E5-1620 
and is about 3.7× times faster than the GPU TitanXp.

5.5 � The model converter of DNN case

5.5.1 � The experiment results

Since the framework of Tensorflow is different from the 
framework of our FPGA, we need to undertake the model 
converting. To verify that our model converter works cor-
rectly, we test the MSE of Tensorflow and the MSE of FPGA 
on the same 225 test data sets using the model generated by 
the Tensorflow and the model converted by our platform, 
respectively. Table 9 are the results. We have done six times 
training on the Tensorflow framework and got six models, 
converted these models for the FPGA, and with these con-
verted models we do inferencing on the FPGA, and all got 
the same MSE.

Figure 13 is one of our test case results. From this figure, 
we can see that the inferencing results of Tensorflow are 
almost the same as the results of FPGA, which proves our 
model converter working well.

6 � Discussions

We intentionally selected two different area use cases to 
verify that our hybrid ML platform design methodology 
is general. Although the two algorithms are different, 
one is CNN, the other is normal DNN, with our solu-
tion we got the same conclusion, that is the GPU is more 
suitable for training, and the FPGA is best in referenc-
ing, which confirms our initial hypothesis and analysis. 
Moreover, it proves our solution can take advantage of 

Table 8   Results of 225 sets inferencing time

Experiments CPU-E5-1620 GPU-TitanXp FPGA-Arria10

Inferencing time (s) Inferencing time (s) Acceleration 
(GPU/CPU)

Inferencing time (s) Acceleration 
(FPGA/CPU)

Acceleration 
(FPGA/GPU)

1 0.539186 0.160862 3.3519 0.0363316 14.8 4.4
2 0.488358 0.133327 3.6629 0.0374917 13.0 3.6
3 0.508489 0.119494 4.2554 0.0346079 14.7 3.5
4 0.500365 0.122232 4.0936 0.0382779 13.1 3.2
5 0.520802 0.129460 4.0229 0.0384238 13.6 3.4
6 0.451343 0.153649 2.9375 0.0362708 12.4 4.2
Average 0.501420 0.136500 3.6733 0.0369006 13.6 3.7

Table 9   Converting model experiments of DNN

Experiments MSE of tensorlfow MSE of FPGA

1 0.000028 0.000028
2 0.000029 0.000029
3 0.000028 0.000028
4 0.000029 0.000029
5 0.000029 0.000029
6 0.000029 0.000029

Fig. 13   Results of converting model in inferencing PUE
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different high-performance devices to implement all kinds 
of machine learning jobs efficiently.

Also, we have a few interesting findings. For instance, 
when we perform the CNN case study inferencing on one 
image, we obtain the result shown in Table 10. We can see 
that the average speed of Arria 10 is about 44.4 times faster 
than the CPU E5-1620 and is about 6342 times faster than 
the GPU TitanXp. In Wang et al. work (2017), FPGA was 
36.1× faster than CPU. These results justify that our deci-
sion to use the FPGA to do inferencing is correct. Concern-
ing the GPU’s slight underperformance, we explain that the 
workload associated with the inferencing of one image is 
too small compared with the GPU initialization time and 
delay. Therefore, the total time of the GPU, which includes 
the initialization time and inferencing time is the longest.

Additionally, in the DNN case study, when the train-
ing sets’ batch size is small, e.g., less than 32, the train-
ing speed of GPU is even slower than the training speed 
of CPU. Our explanation is CPU has better bandwidth and 
frequency than GPU, as the transfer speed of our ddr4-2400 
is 19,200 MB/s, the transfer speed of GPU which equals the 
PCIe Gen 3 × 16 is 15,760 MB/s, and the max frequency of 
our CPU is 3800 MHz, the max frequency of our GPU is 
1582 MHz. When the computing job is too small, although 
the GPU has more parallel computing cores, GPU does not 
have any further advantages over CPU.

7 � Conclusion and future work

In this paper, we presented a hybrid, GPU-FPGA based 
design methodology for enhancing machine learning appli-
cations’ performance. After carefully comparing and ana-
lyzing the characters and the structures of CPU, GPU and 
FPGA, the results of our investigations suggest that the 
GPU is more suitable for training while the FPGA is best 
for inferencing and a model converter is necessary when the 
training and inferencing frameworks are different. Therefore, 
to achieve higher machine learning performance, a better 

strategy would be to implement the training module on the 
GPU and the inferencing module on the FPGA.

According to the above design methodology, we imple-
mented two machine learning systems. One is a CNN for 
handwriting digit recognition, and the other is a DNN 
regression for the estimation of the data center’s PUE. The 
results of the two use cases confirm clearly that our hypoth-
esis and analysis are correct. Also, it proves that our ML 
platform solution can take advantage of different high-per-
formance devices to implement all kinds of machine learn-
ing jobs efficiently.

In our future work, we plan to do further investigation 
on the power analysis of the hybrid ML system. Besides, 
we will summarize the experience of model converting to 
identify standard rules for any model converting.
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