
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2020) 11:2309–2323
https://doi.org/10.1007/s12652-019-01357-4

ORIGINAL RESEARCH

A hybrid GPU‑FPGA based design methodology for enhancing
machine learning applications performance

Xu Liu1 · Hibat‑Allah Ounifi2 · Abdelouahed Gherbi2 · Wubin Li3 · Mohamed Cheriet1

Received: 2 January 2019 / Accepted: 5 May 2019 / Published online: 13 June 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
The high-density computing requirements of machine learning (ML) is a challenging performance bottleneck. Limited by
the sequential instruction execution system, traditional general purpose processors are not suitable for efficient ML. In this
work, we present an ML system design methodology based on GPU and FPGA to tackle this problem. The core idea of our
proposal is when designing an ML platform, we leverage the graphics processing unit (GPU)’s high-density computing to
perform model training and exploit field programmable gate array (FPGA)’s low-latency to perform model inferencing.
In between, we define a model converter, which enable transforming the model used by the training module to one that is
used by inferencing module. We evaluated our approach through two use cases. The first is a handwritten digit recognition
with convolutional neural network while the second use case is for predicting data center’s power usage effectiveness with
deep neural network regression algorithm. The experimental results indicate that our solution can take advantages of GPU
and FPGA’s parallel computing capacity to improve the efficiency of training and inferencing significantly. Meanwhile, the
solution preserves the accuracy and the mean square error while converting the models between the different frameworks.

Keywords Machine learning · High performance computing · Heterogeneous computing · Hybrid platform · GPU
computing · FPGA computing · CNN · DNN · Model converting · PUE

1 Introduction

Recent massive adoption of machine learning applications,
e.g., prediction of PM2.5 (Ganesh et al. 2018) and mural
deterioration detection (Huang et al. 2017), are commonly
based on neural network algorithms such as multilayer

perceptron (MLP) or CNN. These algorithms, in general,
have to face substantial training data and consuming much
time to achieve high accuracy, which is a challenge for GPPs
(such as CPU) which have few computing cores and execute
instructions in sequence and thus are worse at high-density
computing tasks.

Meanwhile, people found that matrix operations almost
dominate the ML algorithms. We can decompose the com-
plex matrix operations into duplicated and straightforward
atom operations such as additions and multiplications. Base
on these facts and previous GPPs’ shortages, people, try to
find some other hardware devices which have much more
parallel computing units. GPUs and FPGAs become the
natural choice as they all have lots of computing units which
can be re-programmed to work in parallel to increase the
speed of machine learning.

A classical machine learning process includes two main
phases, a training phase, and an inferencing phase. During
the training phase, we pour tens of thousands of training
data sets into the neural network, and the distance between
the ground truth value and the prediction value will decrease
continuously, and when the accuracy reach our goal, we stop

 * Abdelouahed Gherbi
 Abdelouahed.Gherbi@etsmtl.ca

 Xu Liu
 xu.liu.1@ens.etsmtl.ca

 Hibat-Allah Ounifi
 hibat-allah.ounifi.1@ens.etsmtl.ca

 Wubin Li
 wubin.li@ericsson.com

 Mohamed Cheriet
 mohamed.cheriet@etsmtl.ca

1 Synchromedia Laboratory, University of Québec (ÉTS),
Montréal, Canada

2 University of Québec (ÉTS), Montréal, Canada
3 Ericsson Research, Ericsson, Montréal, QC, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-019-01357-4&domain=pdf

2310 X. Liu et al.

1 3

the training and get the model. In the inferencing phase, we
use the previous model to do prediction or estimation. When
the training and inferencing are not on the same framework,
for example, training on the Tensorflow and inferencing on
Caffe, a model converter is necessary to convert the model
from one framework to another.

Currently, there have been extensive studies on how to
use only GPUs to accelerate the training phase (Raina et al.
2009; Bergstra et al. 2011; Sharp 2008; Potluri et al. 2011)
or how to use only FPGAs to accelerate the inferencing
phase (Motamedi et al. 2016; Qiu et al. 2016; Nagarajan
et al. 2011; Aydonat et al. 2017), however, the investiga-
tion on how to combine the GPUs and FPGAs to improve
the performance of the ML system, as well as what kind
of hardware devices combination has the best performance
remain mostly unexplored.

GPUs and FPGAs have different architectures, different
characteristics, and performance. In our paper, we first ana-
lyzed the advantages and disadvantages when using GPUs
and FPGAs individually to implement ML’s various compo-
nents, training, and inferencing. Then we gave out our design
methodology of the ML system, and next, we performed
two real ML cases, hand digital recognization, and predic-
tion of datacenter’s PUE based on our design methodology
and tested and compared their performances. In the end, we
made a discussion about the two experiments’ results and
gave out our viewpoints.

We organize the rest of our paper as follows: Sect. 2
presents related work about ML acceleration with different
kinds of hardware devices. Sect. 3 elaborates the details of
our hybrid design methodology of the ML system. Sects. 4
and 5 describe the implementations and performances of
a CNN digital handwriting classification and a DNN PUE
prediction based on our design methodology individually.
Section 6 discusses the two cases’ differences and problems
we met and gives some explanations. In Sect. 7, we conclude
our work and briefly discuss our future research plan.

2 Related work

People have studied ML acceleration with GPU extensively.
For example, Steinkraus et al. (2005) implemented a full
connected two layers neural network on ATI Radeon X800
graphic card and achieved 3× speedup in training and test-
ing. However, they published the paper in 2005; the pri-
mary method of using pixel shaders for ML computation is
outdated. Similarly, Raina et al. (2009) used GPU to accel-
erate the two unsupervised learning algorithms, includ-
ing deep belief networks (DBNs) and sparse coding. They
took advantages of GPUs’ global memory to save the data
and parameters from reducing the transfer time between
the host machine and the GPU, resulting in performance

improvement with 70 times faster than a dual-core CPU
when implementing the DBNs algorithm. Their result dem-
onstrated the potential of acceleration using GPUs, which is
also confirmed by Potluri et al. (2011) in their work where
Potluri et al. have used GeForce 9500 GT with 256MB mem-
ory graphic card to speed up GPU-based Universal Machine-
CNN (UM-CNN).

On the adoption of FPGAs to accelerate ML algorithms,
Motamedi et al. (2016) presented an accelerator for deep
CNNs. Their accelerator can exploit the available parallel-
ism resources to minimize the execution time, achieving a
1.9× speedup comparing with the state-of-the-art deep CNN
accelerator. Aydonat et al. (2017) proposed a new architec-
ture designed with OpenCL. They tried to increase data
reusing to reduce external memory bandwidth consump-
tion. They also used the Winograd transform to improve the
FPGAs’ performance. They managed to speed up executing
the AlexNet CNN benchmark on Intel’s Arria 10 FPGA,
10× faster than the state-of-the-art on FPGAs and the power
efficiency is similar to the best implementation of AlexNet
on TitanX GPU. Nagarajan et al. (2011) has proposed a
method to implement a multi-dimensional PDF estimation
algorithm which used Gaussian kernels on the FPGA. They
used ActiveHDL to develop their platform. It is a hardware
description language (HDL) and is not so popular and not
so easy to use. They have got a 20× speedup over a 3.2 GHz
CPU processor.

To the best of our knowledge, few works combined FPGA
and GPU to improve the performance of ML systems in the
past. The first work we found is a FPGA-GPU architecture
for kernel SVM pedestrian detection by Bauer et al. (2010).
They used GPU for model training and inferencing and used
FPGA for feature extraction. In the second work, Zhu et al.
(2016) have implemented a novel parallel framework for
neural networks with GPU and FPGA. In their work, the
neural network processing was decomposed into layers and
scheduled either on the GPU or FPGA accelerators. Addi-
tionally, in a white paper (Rush et al. 2017), without giving
detailed information, the authors only gave a hypothesis that
the combination of CPU, GPU and FPGA would have the
best performance, but did not give any verification.

In summary, few studies have combined GPUs and
FPGAs together to implement ML systems, not to mention
how to convert models from one framework to another.

3 Design methodologies

3.1 The whole architecture and workflow

A standard ML system usually has two main modules; one is
for training model, the other is for inferencing model. Model

2311A hybrid GPU-FPGA based design methodology for enhancing machine learning applications…

1 3

is the belt between the training module and the inferencing
module.

Figure 1 presents the whole architecture of our ML sys-
tem, which contains three modules, i.e., training module,
inferencing module, and converting-model module. We
implemented the training module on the GPU and built the
inferencing module on the FPGA. As the FPGA inferencing
framework is different from the GPU training framework, a
model converting component is needed.

The entire flow is as follows. The training module loads
training data from the database first and then uses ML to
train the model. When the model is ready, the system con-
verts the model from the training framework to the inferenc-
ing framework. In the end, the inferencing module loads the
model file and the inferencing data and does classification
or prediction.

3.2 The GPU training module

The goal of the training phase is to train a model to obtain
the maximum test accuracy within minimum time. Based on
two reasons, we select the GPU to implement the training
module. One reason is, comparing with FPGAs, GPUs often
own lower price/performance ratio in model training. So
most research projects select GPUs to do training (Steink-
raus et al. 2005; Raina et al. 2009; Potluri et al. 2011), and
few projects choose FPGAs to train their model (Zhao et al.
2016). The other reason is the training module usually has
complex architectures (forward and backward propagation,
gradient descent, and so on) and its goal is to get the model,
once get the model, the training module is useless, so people
hope to build the training module quickly. On this point,
GPUs are much easier to program than FPGAs. As GPUs
have similar instruction system as CPUs, the programs run
on CPUs can be easily transplanted to GPUs. Furthermore,
Nvidia corporation has created compute unified device

architecture (CUDA), which is a GPU computing program
standard based on the C programming language. Moreo-
ver, many companies have already developed a series of
frameworks which support CUDA standard and hide CUDA
implementation details, allowing users to focus on the design
of ML algorithms. TensorFlow is almost the best one among
those frameworks, which is developed by Google Brain
(Google 2019).

Figure 2 is our training module development flow. Firstly
we use Tensorflow to design our training algorithm, and then
the Tensorlfow will translate the python code into CUDA
code, and depart the code into two parts, and put one on
the GPU to run, put the other on the CPU to execute. After
finishing GPU computing, the CPU will collect the results
from the GPU and combine the results.

3.3 The FPGA inferencing module

The goal of the inferencing phase is to do inferencing with
minimum latency using the model generated from the train-
ing phase. Unlike training, we often do inferencing multiple
times. Any small latency of each cycle can accumulate to a
considerable amount. So it is valuable to reduce the infer-
encing latency.

FPGAs are composed of logical elements (LEs). We just
programmed these LEs into different hardware electrical
circuits to meet our requirements. FPGAs’ performances
are near application-specific integrated circuits (ASICs),
and they can be reconfigured many times, so their prices
are usually much higher than ASICs, CPUs, and GPUs.
In most FPGA designs, there is no fetching and decoding
instruction system, which make FPGAs are much faster than
GPUs and CPUs. However, this advantage also becomes the
FPGAs’disadvantage. As the FPGAs do not have traditional
instruction system, when we have a new function require-
ment, we can not use the general software programming

Fig. 1 The architecture of
heterogeneous machine learning
system (Liu et al. 2018)

2312 X. Liu et al.

1 3

language such as C to describe it. We have to use some
HDLs such as Verilog or VHDL (VHSIC very high-speed
hardware description language) to re-design the whole hard-
ware electrical circuit. The HDLs are similar to the assembly
languages, and even a small function needs many HDL sen-
tences to describe. If a system is as complex as the DNN’s
training module, it is hard to use HDLs to implement it,
which restricts the scales of FPGA designs most.

Now, we can compensate the difficulties of FPGA design
by using high-level programming languages such as open
computing language (OpenCL) which do not require too
much electrical circuits knowledge (Aydonat et al. 2017;
Zhao et al. 2016; Bettoni et al. 2017; Li et al. 2018). OpenCL
is a framework for developing programs which can run on
different heterogeneous platforms such as GPU + CPU or
FPGA + CPU.

Figure 3 shows its development flow. We can divide the
development into two phases: the host program and the ker-
nels. When designing the kernels, we should consider how
to take the full parallel computing capacity of the FPGA.
The kernels will be synthesized into hardware logic circuits
and uploaded to the FPGA development board. The host
program, which is similar to the traditional C program that
runs on the CPU, is in charge of allocating parallel comput-
ing jobs on the FPGA development board and collecting the
computing results from the FPGA.

3.4 Model converter

Training and inferencing are usually put on different plat-
forms, as the training process is high-density computing
and time-consuming, it needs a large number of comput-
ing resources which is not affordable for most inferenc-
ing platforms. Moreover, the training is usually a one-off
process in a fixed time. On the contrary, the inferencing

happened often. So it is a smart and efficient way to use
different platforms to implement the training and inferenc-
ing phases.

However, generally, different platforms adopt different
frameworks and model definitions. We can not use the
model generated by one framework on another directly.
A model converter which can convert a model from one
framework to another is needed. Although there are
already some tools such as MMdnn (Chen et al. 2019)
for converting the model file among the main frameworks
(Tensorflow, Caffee, PyTorch and so on), it is useless for
personal custom-made cases, including our case.

Suppose we should turn a model from the source frame-
work to the target framework. For converting a model, here
is a general process.

Fig. 2 The flow of the GPU
training development (Lanfear
2013)

CUDA C
Application

NVCC

CUDA C
Kernels

CUDACC

Rest of C
Application

CPU
Compiler

CUDA
object files

Linker

CPU object
files

CPU-GPU
Executable

Tensorflow Code

def saxpy(x, y):

 y = a * x + y

CUDA Code

__global__

void saxpy(int n, float a, float *x, float *y)
{
 int i = blockIdx.x*blockDim.x +
threadIdx.x;
 if (i < n) y[i] = a*x[i] + y[i];
}

int N = 1<<20;

cudaMemcpy(d_x, x, N*sizeof(float),
cudaMemcpyHostToDevice);
 cudaMemcpy(d_y, y, N*sizeof(float),
cudaMemcpyHostToDevice);

// Perform SAXPY on 1M elements
 saxpy<<<(N+255)/256, 256>>>(N, 2.0f,
d_x, d_y);
 cudaMemcpy(y, d_y, N*sizeof(float),
cudaMemcpyDeviceToHost);

main() {
read_data(…);
manipulate(…);
clEnqueueWriteBuffer(…);
clEnqueueNDRange(…,sum
,…);
clEnqueueReadBuffer(…);
display_result(…);
}

__kernel void
sum(__global float *a,
__global float *b,
__global float *y)
{
int gid = get_global_id(0);
y[gid] = a[gid] + b[gid];
}

Standard
C Compiler

OpenCL
Compiler

EXE AOCX

Verilog

Quartus II

x86

PCIe 3.0 x8

Host Code OpenCL Acceleration Code

Host
Accelerator

Fig. 3 The flow of the FPGA inferencing development (Intel 2018)

2313A hybrid GPU-FPGA based design methodology for enhancing machine learning applications…

1 3

1. Understand and capture the date structure of the source
model completely.

2. Understand and capture the model file definition of the
target framework fully.

3. Design a mapping function from the source model
parameters and weights to the target model.

A model data structure or a model file of machine learn-
ing contains parameters such as weights and biases gener-
ated during the training process, it is the core and goal of
machine learning, and we save it after training and load it
before inferencing.

It is not accessible to understand a model data structure
or file well, as there are many items, such as the number
of The results of CNN training timelayers, the size of each
layer, the size of each filter, the activation functions used
between layers, the order of matrix dimensions, and the flat-
tening ways. In particular, if the model definition is not open
source, we have to guess the order of matrix dimensions,
which is almost the hardest part, as the matrices involved
usually have 4-dimensions, leading to 4 × 3 × 2 × 1 = 24
possible flattening ways. However, only one way is correct.

When we design the model mapping function, we should
obey all of the above definitions in the target model, which is
the secret to guarantee the correctness of model converting.

Figure 4 is a simple model converting example. There are
two frameworks, 1 and 2, which have the same machine
learning architectures and the numbers of parameters.

However, their model’s data structures and flattening ways

are different. W1 in model 1 is stored as
[

1 1

0 0

]

 and flattened

as [1, 1, 0, 0] while W2 in model 2 is stored as
[

0.1 0.1

0 0

]

 and

is flattened as [0.1, 0, 0.1, 0]. After understanding the two
model’s data structures and flattening ways well, it is easy
to convert the model from framework 1 to framework 2.

In our case, as we implemented the training module on
the Tensorflow framework, and implemented the inferenc-
ing module on the OpenCL-FPGA framework, we design a
particular model mapping function which can map weights
and bias from the Tensorflow framework to the FPGA
framework.

3.5 Summary

After analyzing and comparing different hardware device
combinations, we found the best solution to implement a
machine learning system that is to use GPU to implement the
training module and the FPGA to implement the inferencing
module and add a model converter in charge of converting
the model from one framework to another.

To verify this design methodology, we implemented two
ML use cases and tested their performance. The first is a
CNN for digital hand-writing recognition, the other is a
DNN regression for estimating the PUE of the data center.

Fig. 4 Schematic of model converting (Liu et al. 2018)

2314 X. Liu et al.

1 3

4 A case study on digital handwriting
recognition with CNN classification

4.1 Experiment environment

The following two cases use the same experiment
environment.

4.1.1 Hardware environment

Our devices’ list is shown in Table 1. We use the mother-
board to host every hardware device together. The Titan XP
graphics card communicates with the host board through
PCIe gen 3 × 16 (with the bandwidth of 15760 MB/s). The
Arria 10 development board transfers data to the host board
by PCIe gen 3 × 8 (with the bandwidth of 7880 MB/s). When
the amount of training data is huge, GPU cannot load the
whole data in one-time and has to break the data into many

small batches, which will lead to transferring data frequently
between the host and the device.

On the contrary, the data for inferencing is usually small,
that is no need to transfer data frequently. From this perspec-
tive, the bandwidth becomes a performance bottleneck of the
system. Therefore, this becomes another reason to use the
GPU to do the training and the FPGA to do the inferencing.

4.1.2 Software environment

Table 2 is our software environment. The operating system
is Ubuntu 16.04. We use the Tensorflow to implement the
GPU training module and the OpenCL to design the FPGA
inferencing module.

4.2 The algorithm of CNN case

Our goal is to verify the performance of the heterogeneous
machine learning system. We select LeNet-5 and MNIST
(LeCun et al. 2018) as our algorithm and data set, which
are not too complicated but enough to show the effects of
hardware acceleration.

The MNIST is a training dataset for digital handwriting
recognition. Each example is a pixel value matrix whose size
is 28 × 28 , and each pixel value’s range is from 0 to 255. In
our case, for easy processing, we divide the pixel value by
255 (Fig. 5). MNIST dataset totally includes 55,000 train-
ing examples, 5000 validation examples, and 10,000 test
examples.

Table 1 Hardware devices list
(Liu et al. 2018)

Device Type Number

CPU Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50 GHz 1
Memory Samsung DDR4 8 g 4
Solid state disk drive INTEL SSDSC2BB48 480 g 1
Mechanical hard disk drive WDC WD40EFRX-68N 4 TB 1
GPU NVIDIA TITAN Xp 1
FPGA Intel Arria 10 GX FPGA development kit 1

Table 2 Software environment (Liu et al. 2018)

Software Version

Ubuntu 16.04.3 LTS
Python 3.5.2
Tensorflow 1.4.0
Tensorflow-GPU 1.4.0
CUDA 8.0
Intel(R) FPGA SDK for OpenCL 17.1.0 Build 240

Fig. 5 The pixel value matrix
(Google 2018)

2315A hybrid GPU-FPGA based design methodology for enhancing machine learning applications…

1 3

The LeNet-5 is designed by Yann LeCun for handwrit-
ten and machine-printed character recognition (LeCun et al.
1998), belongs to CNNs. It has almost all classical CNN
structures (convolution layers, pooling layers, and full con-
nection layers, and so on) and has high accuracy in digital
handwriting recognition. Most importantly, it contains a lot
of high-density computing jobs which are suitable for testing
the acceleration effects of parallel designs.

Figure 6 is our tailor-made version of LeNet-5 for this
experiment. It has seven layers in total, including three con-
volution layers, two sub-sampling layers, and two full con-
nection layers. These layers are orderly arranged, as illus-
trated in Fig. 6.

4.3 The training module of CNN case

4.3.1 The implementation

Figure 7a is our training phase control flow diagram. It
includes two main phases, i.e., forward propagation and
backward propagation. The difference of value calculated
by the forward propagation and label value is passed into
the backward propagation to calculate the weights and
biases of each layer. After several computing loops, the
difference converges within a permissible range, the train-
ing process terminates. We store weights and bias in a
model file.

A
INPUT:
1@28x28

C1: feature maps
20@24x24 S2:f. maps

20@12x12

C3: f. maps
50@8x8

S4: feature
maps 50@4x4

C5: layer
800

F6: layer
500 OUTPUT:

10

Convolutions 1
Convolutions 2

Flatten

Subsampling 1 Subsampling 2

Full
Connection 1

Full
Connection 2

Fig. 6 The architecture of LeNet-5 improved for experiment (Liu et al. 2018)

Fig. 7 a The control flow of training; b the TensorFlow implementation of the training module (Liu et al. 2018)

2316 X. Liu et al.

1 3

We use NVIDIA Titan Xp graphics card to accelerate the
training process. The GPU has 3840 CUDA cores which
can be programmed to do parallel computing. Its floating
computing performance can reach 12 TFLOPS.

To do the NVIDIA graphics card computing develop-
ment, it should use the CUDA programming language
mentioned previously. That will mean we should build the
acceleration kernel from scratch. Thanks to the TensorFlow,
which packages the CUDA libraries, now we only need to
focus on designing the architecture. The Fig. 7b is part of
our TensorFlow implementation code.

4.3.2 The experiment results

In this experiment, we aim to find a better device for training
model by comparing the training speed of CPU and GPU.

For achieving this goal, we designed two use cases. One
only has a CPU-E5-1620, the other has a CPU-E5-1620 and

a GPU-TitanXp. We chose the same 55,000 training exam-
ples and measured their training time, respectively. We did
six times the same tests and calculated their average times.

The results are in Table 3. We can conclude that the aver-
age speed of TitanXp is about 8.8× faster than the average
speed of CPU E5-1620 with the same accuracy. This result
is similar to Kind (2018) work whose GPU speed is about
9× faster than CPU.

4.4 The inferencing module of CNN case

4.4.1 The implementation

Figure 8a is our inferencing phases control flow. It only has
forward propagation. It loads the model generated from the
training module and then does inferencing only with the for-
ward propagation algorithm.

Table 3 The results of CNN training time (Liu et al. 2018)

Experiments CPU-E5-1620 GPU-TitanXp Accelerate times

Training time (s) Accuracy (%) Training time (s) Accuracy (%) Acceleration (GPU/CPU)

1 448.60 98.70 50.61 98.80 8.86
2 447.79 98.88 51.17 98.58 8.75
3 448.35 98.90 50.73 98.80 8.84
4 448.62 98.94 50.46 98.88 8.89
5 447.62 98.59 50.94 98.82 8.79
6 447.88 98.94 50.78 98.79 8.82
Average 448.10 98.80 50.80 98.80 8.80

Fig. 8 a The control flow of
inferencing; b the kernels of
OpenCL implementation (Liu
et al. 2018)

2317A hybrid GPU-FPGA based design methodology for enhancing machine learning applications…

1 3

We use Intel Arria 10 FPGA development board to imple-
ment the inferencing module. Arria 10 is made by Intel with
the 20 nm process. It has high performance and low power
consumption. Although its 1.5 TFLOPS is still slower than
TITAN Xp 12 TFLOPS, its power consumption below
100 W is much better than TITAN Xp 250 W.

We use OpenCL for FPGA development. Its develop-
ment includes two parts: a host program and kernels. The
host program runs on the CPU, and the kernels run on the
FPGA. Figure 8b shows our kernel events implemented with
OpenCL. It has eight kernel events which map with the con-
trol flow’s eight functions. These logical kernel events will
be programmed on the FPGA and executed one by one to
implement the inferencing function.

4.4.2 The experiment results

In this experiment, we use the CPU, GPU, and FPGA to
execute the same inferencing algorithm with the same model
and compare their efficiencies with each other.

First, we measure the time of inferencing 10,000 images
on the CPU, GPU, and FPGA devices, respectively. Then we
execute the measurement six times and calculate the aver-
age time of inferencing 10,000 images on different hardware
devices.

The results of the experiments are presented in Table 4.
From the table, we can see that the average speed of Arria
10 is about 10.9 times faster than the average rate of CPU
E5-1620 and is about 7.1 times faster than the GPU TitanXp.

4.5 The model converter of CNN case

4.5.1 The experiment results

For verifying our model converter works well, we conduct
two experiments on the same 10K MNIST test examples
respectively. In Experiment_1, we only test FPGA inferenc-
ing accuracy with the original model while in Experiment_2,
and we change CNN’s configuration, retrain the model by

TensorFlow with GPU, convert the model to the FPGA and
then test the inferencing accuracy on FPGA and Tensorflow
respectively.

Table 5 presents the statistics of accuracy collected from
the two experiments. The Experiment_2’s accuracy is better
than Experiment_1’s. In Experiment_2, the FPGA has pre-
served the same precision as the TensorFlow, which proved
our model convert successfully.

5 A case study on data center PUE with DNN
regression

5.1 The overview of the use case

To fully evaluate our hybrid design methodology of the ML
system, we select another algorithm to implement and test
its performance on CPU, GPU, and FPGA. This algorithm
belongs to one of DNN regressions, and we use it for esti-
mating the PUE of Data Center (DC).

A DC is a physical space that groups together IT systems
(servers, storage, and so on), mechanical systems [computer
room air conditioner (CRACs), chillers, and so on], and elec-
trical systems [uninterruptible power supply (UPS), power
distribution unit (PDU), transformers, and so on], for storing,
processing and protecting data. The energy consumption takes
the main part of operating a DC and can reach up to 75% of
operating costs, which is one of the major reasons why indus-
trial and environmental organizations have focused on improv-
ing energy performance while ensuring continuity of services.
For this reason, many energy-related metrics are defined, such
as PUE. The Eq. (1) is the definition of the PUE (David Wright

Table 4 Results of 10,000 image inferencing time

Experiments CPU-E5-1620 GPU-TitanXp FPGA-Arria10

Inferencing time (us) Inferencing time (us) Acceleration
(GPU/CPU)

Inferencing
time (us)

Acceleration
(FPGA/CPU)

Acceleration
(FPGA/GPU)

1 14.881587 9.713557 1.5320 1.38002 10.8 7.0
2 14.995880 9.202130 1.6296 1.34051 11.2 6.9
3 14.685811 9.419498 1.5591 1.36456 10.8 6.9
4 14.785795 9.762074 1.5146 1.34304 11.0 7.3
5 15.064704 9.854970 1.5286 1.32339 11.4 7.4
6 14.307688 9.440861 1.5155 1.37961 10.4 6.8
Average 14.786910 9.565520 1.5459 1.35520 10.9 7.1

Table 5 Converting model experiments of CNN

Experiment_1 Accuracy(%) Experiment_2 Accuracy(%)

N/A N/A TensorFlow 99.13
FPGA 99.05 FPGA 99.13

2318 X. Liu et al.

1 3

2017). The IT equipment power includes all the actual load of
IT equipment such as workstations, servers, storage, switches,
printers, and other service delivery equipment (David Wright
2017):

The PUE stands for how energy is efficiently used to keep
the DCs running without service interruption. It is used to
evaluate over a year the total amount of energy consumed
by the DC, compared to the amount of energy necessary for
the operation of the IT equipment. The closer the result is
to 1.0, the less power the non-IT equipment consumes, and
the more it is considered “eco-responsible”.

Moreover, the interactions of DC systems are complicated.
According to Ounifi et al. (2018)’s work, the DC systems (IT,
electrical and mechanical systems) interactions and the differ-
ent feedback loops make it difficult to estimate and predict the
DCs’ energy efficiency accurately.

To capture such complexities, we try to find an estimation
model to calculate the PUE metric values with the help of
DNN.

DNN borrowed the concept of the deep neural network of
the brain and will mainly analyze and process the input data
through a succession of several neurons that take the input sig-
nals from the previous neurons. DNNs are good at modeling
non-linearity and have characteristics such as the ability to
model real-time operation and fault tolerance.

In this case study, we will try to use our machine learning
design methodologies to implement a DNN regression sys-
tem which can train a model for estimating the PUE of a data
center.

5.2 The dataset and the DNN regression algorithm
of DNN case

5.2.1 The dataset

The dataset we used is from the “ITEA3 RISE SICS Data
Center” located in Sweden. It has 2881 sets. Each set is col-
lected from the DC every 60 s from 9 a.m. to 9 p.m. contain-
ing 415 kinds of DC features such as fan speed, input DC’s
power, and average cold Aisle temperature (Ounifi et al. 2018).
Table 6 shows part of the 415 features. Besides, the dataset
also has a time series column and a ground truth PUE col-
umn. So our working dataset is a 2881 × 417 matrix. We apply
cross-validation by dividing the 2881 data sets into two parts:
2656 for training sets, and 225 for test sets.

(1)PUE =
Total data center power

IT equipment power
.

5.2.2 The architecture of DNN regression algorithm

According to the structure of Sect. 5.2.1’s data sets, we
design a tailor-made version of DNN regression which is
composed of one input layer, five hidden layers and one out-
put layer. The details architecture of the five hidden layers
is as follows.

– Input layer: 415 neurons.
– Full connected layer 1: 512 neurons.
– Activation function: Relu.
– Full connected layer 2: 1024 neurons.
– Activation function: Relu.
– Full connected layer 3: 1024 neurons.
– Activation function: Relu.
– Full connected layer 4: 1024 neurons.
– Activation function: Relu.
– Full connected layer 5: 512 neurons.
– Activation function: Relu.
– Output layer: 1 neuron.

And all these have been shown on the Fig. 9.

5.3 The training module of DNN case

5.3.1 The implementation

Figure 10a is our training control flow which is similar to
Fig. 7a. It includes two main phases, i.e., forward propagation
and backward propagation. The difference between CNN case
and DNN case is the DNN case has no convolutional layers,

Table 6 A part of selected DC features of the ITEA3 RISE Sics DC

DC features Units

Indoor/outdoor temperature ◦C

Input data center power Mw
Whole data center humidity %
Energy consumption/rack Mw
Workload (electrical)/server Mw
Workload (CPU usage)/server Mgbit
Power consumption after the PDU Mw
Average cold Aisle temperature ◦C

Fan speed RPM
Fan power Kw
CRAC fan power Kw
Power used by chilled liquid Kw
Chilled water entering temperature ◦C

CRAC energy consumption KVA
Total rack IT load KVA
Hot Aisle temperature ◦C

hline Outside air dry bulb temperature ◦C

2319A hybrid GPU-FPGA based design methodology for enhancing machine learning applications…

1 3

and pooling layers and the cost function is mean square error
(MSE) which defined in Eq. (2) instead of mean cross entropy
(MCE). After several computing loops, the MSE will converge
within a permissible range, the training process terminates. We
will store the final weights and bias in a particular model file:

where yi is the real output, y′
i
 is the calculated output, and n

is the number of the input data. We still use Tensorflow to

(2)MSE =
1

n

n
∑

i=1

(yi − y�
i
)2,

implement this training part. Figure 7b is part of our Ten-
sorFlow code.

5.3.2 The experiment results

During this experiment, we run the same DNN regression
training program with the same training dataset on GPU-
TitanXp and CPU-E5-1620 respectively and then measure
their MSEs and execution time.

Figure 11 is the result that we use the model trained
by GPU and the model trained by the CPU to do PUE

Fig. 9 DNN proposed model

Fig. 10 a The control flow of DNN training; b the TensorFlow implementation of the DNN training module

2320 X. Liu et al.

1 3

inferencing on the same test set. They look almost the same.
They have the same MSE: 0.000029. However, their execu-
tion times are different. Table 7 shows that the GPU’s train-
ing speed is about 12.4× faster than the CPU’s.

5.4 The inferencing module of DNN case

5.4.1 The implementation

Figure 12a is our inferencing phases control flow, which
only has two operations, full connecting and Relu. It loads
the model generated from the training phase and then does
inferencing only with the forward propagation algorithm.

We also use OpenCL for FPGA design. Like GPUs, the
process of FPGA development has two parts: a host program
and kernels. The host program which runs on the CPU is in
charge of loading datasets and model, allocating computing
jobs on the FPGA and collecting the results from the FPGA.
The kernels run on the FPGA are the primary computing
acceleration part.

Fig. 11 The comparison of GPU-model and CPU-model inferencing
results

Table 7 The DNN training time Experiments CPU-E5-1620 GPU-TitanXp Accelerate times

Training time (s) MSE (%) Training time (s) MSE (%) Acceleration (GPU/CPU)

1 154.36 0.000029 12.14 0.000029 12.72
2 154.58 0.000029 12.38 0.000028 12.48
3 154.66 0.000029 12.52 0.000029 12.35
4 154.74 0.000029 12.40 0.000029 12.48
5 154.49 0.000029 12.68 0.000029 12.12
6 154.78 0.000029 12.73 0.000029 12.16
Average 154.60 0.000029 12.50 0.000029 12.40

Fig. 12 a The control flow of
DNN inferencing; b the kernels
of OpenCL DNN implementa-
tion

2321A hybrid GPU-FPGA based design methodology for enhancing machine learning applications…

1 3

Figure 12b shows our kernel events implemented with
OpenCL. It has 11 kernel events which map with the con-
trol flow’s 11 functions. These logical kernel events will
be programmed on the FPGA and executed one by one to
implement the inferencing function.

5.4.2 The experiment results

Similar to the previous use case, we use the CPU, GPU, and
FPGA to execute the same inferencing algorithm with the
same model and compare their inferencing times with each
other. First, we measure the time of inferencing 225 sets on
the CPU, GPU, and FPGA devices, respectively. Then we
execute the measurement six times and calculate the average
time of inferencing 225 sets on different hardware devices.

The results of the experiments are presented in Table 8.
From the table, we can see that the average speed of FPGA
Arria-10 is about 13.6× times faster than the CPU E5-1620
and is about 3.7× times faster than the GPU TitanXp.

5.5 The model converter of DNN case

5.5.1 The experiment results

Since the framework of Tensorflow is different from the
framework of our FPGA, we need to undertake the model
converting. To verify that our model converter works cor-
rectly, we test the MSE of Tensorflow and the MSE of FPGA
on the same 225 test data sets using the model generated by
the Tensorflow and the model converted by our platform,
respectively. Table 9 are the results. We have done six times
training on the Tensorflow framework and got six models,
converted these models for the FPGA, and with these con-
verted models we do inferencing on the FPGA, and all got
the same MSE.

Figure 13 is one of our test case results. From this figure,
we can see that the inferencing results of Tensorflow are
almost the same as the results of FPGA, which proves our
model converter working well.

6 Discussions

We intentionally selected two different area use cases to
verify that our hybrid ML platform design methodology
is general. Although the two algorithms are different,
one is CNN, the other is normal DNN, with our solu-
tion we got the same conclusion, that is the GPU is more
suitable for training, and the FPGA is best in referenc-
ing, which confirms our initial hypothesis and analysis.
Moreover, it proves our solution can take advantage of

Table 8 Results of 225 sets inferencing time

Experiments CPU-E5-1620 GPU-TitanXp FPGA-Arria10

Inferencing time (s) Inferencing time (s) Acceleration
(GPU/CPU)

Inferencing time (s) Acceleration
(FPGA/CPU)

Acceleration
(FPGA/GPU)

1 0.539186 0.160862 3.3519 0.0363316 14.8 4.4
2 0.488358 0.133327 3.6629 0.0374917 13.0 3.6
3 0.508489 0.119494 4.2554 0.0346079 14.7 3.5
4 0.500365 0.122232 4.0936 0.0382779 13.1 3.2
5 0.520802 0.129460 4.0229 0.0384238 13.6 3.4
6 0.451343 0.153649 2.9375 0.0362708 12.4 4.2
Average 0.501420 0.136500 3.6733 0.0369006 13.6 3.7

Table 9 Converting model experiments of DNN

Experiments MSE of tensorlfow MSE of FPGA

1 0.000028 0.000028
2 0.000029 0.000029
3 0.000028 0.000028
4 0.000029 0.000029
5 0.000029 0.000029
6 0.000029 0.000029

Fig. 13 Results of converting model in inferencing PUE

2322 X. Liu et al.

1 3

different high-performance devices to implement all kinds
of machine learning jobs efficiently.

Also, we have a few interesting findings. For instance,
when we perform the CNN case study inferencing on one
image, we obtain the result shown in Table 10. We can see
that the average speed of Arria 10 is about 44.4 times faster
than the CPU E5-1620 and is about 6342 times faster than
the GPU TitanXp. In Wang et al. work (2017), FPGA was
36.1× faster than CPU. These results justify that our deci-
sion to use the FPGA to do inferencing is correct. Concern-
ing the GPU’s slight underperformance, we explain that the
workload associated with the inferencing of one image is
too small compared with the GPU initialization time and
delay. Therefore, the total time of the GPU, which includes
the initialization time and inferencing time is the longest.

Additionally, in the DNN case study, when the train-
ing sets’ batch size is small, e.g., less than 32, the train-
ing speed of GPU is even slower than the training speed
of CPU. Our explanation is CPU has better bandwidth and
frequency than GPU, as the transfer speed of our ddr4-2400
is 19,200 MB/s, the transfer speed of GPU which equals the
PCIe Gen 3 × 16 is 15,760 MB/s, and the max frequency of
our CPU is 3800 MHz, the max frequency of our GPU is
1582 MHz. When the computing job is too small, although
the GPU has more parallel computing cores, GPU does not
have any further advantages over CPU.

7 Conclusion and future work

In this paper, we presented a hybrid, GPU-FPGA based
design methodology for enhancing machine learning appli-
cations’ performance. After carefully comparing and ana-
lyzing the characters and the structures of CPU, GPU and
FPGA, the results of our investigations suggest that the
GPU is more suitable for training while the FPGA is best
for inferencing and a model converter is necessary when the
training and inferencing frameworks are different. Therefore,
to achieve higher machine learning performance, a better

strategy would be to implement the training module on the
GPU and the inferencing module on the FPGA.

According to the above design methodology, we imple-
mented two machine learning systems. One is a CNN for
handwriting digit recognition, and the other is a DNN
regression for the estimation of the data center’s PUE. The
results of the two use cases confirm clearly that our hypoth-
esis and analysis are correct. Also, it proves that our ML
platform solution can take advantage of different high-per-
formance devices to implement all kinds of machine learn-
ing jobs efficiently.

In our future work, we plan to do further investigation
on the power analysis of the hybrid ML system. Besides,
we will summarize the experience of model converting to
identify standard rules for any model converting.

Acknowledgements This work is partially supported by the Natural
Sciences and Engineering Research Council of Canada (NSERC), Eric-
sson Research Canada and the Canada Research Chair in Sustainable
Smart Eco-Cloud. We would also like to thank Yves Lemieux for his
insightful feedback during the research work.

References

Aydonat U, O’Connell S, Capalija D, Ling AC, Chiu GR (2017) An
OpenCL deep learning accelerator on Arria 10. In: Proceedings
of the 2017 ACM/SIGDA international symposium on field-pro-
grammable gate arrays, ACM, pp 55–64

Bauer S, Köhler S, Doll K, Brunsmann U (2010) FPGA-GPU archi-
tecture for Kernel SVM pedestrian detection. In: Proceedings of
the 2010 IEEE computer society conference on computer vision
and pattern recognition workshops (CVPRW), IEEE, pp 61–68

Bergstra J, Bastien F, Breuleux O, Lamblin P, Pascanu R, Delalleau O
et al (2011) Theano: deep learning on gpus with python. In: NIPS
2011, BigLearning Workshop, Granada, Spain, Citeseer, vol 3

Bettoni M, Urgese G, Kobayashi Y, Macii E, Acquaviva A (2017) A
convolutional neural network fully implemented on FPGA for
embedded platforms. In: New generation of CAS (NGCAS),
IEEE, pp 49–52

Chen C, Yao J, Zhang R, Zhou Y, Qin T, Zhan T, Wang Q (2019)
MMdnn. GitHub repository. https ://githu b.com/micro soft/MMdnn

Table 10 Results of one image
inferencing time

Experiments CPU-E5-1620 GPU-TitanXp FPGA-Arria10

Inferencing time (us) Inferenc-
ing time
(us)

Acceleration
(GPU/CPU)

Inferenc-
ing time
(us)

Acceleration
(FPGA/CPU)

Acceleration
(FPGA/GPU)

1 3172 616045 0.0051 88.74 35.7 6942.4
2 5564 589114 0.0094 90.12 61.7 6536.7
3 4620 588444 0.0079 94.83 48.7 6205.3
4 3234 598652 0.0054 84.57 38.2 7079.0
5 4037 600288 0.0067 101.08 39.9 5938.8
6 4579 609913 0.0075 108.74 42.1 5609.0
Average 4201 600409 0.0070 94.70 44.4 6341.5

https://github.com/microsoft/MMdnn

2323A hybrid GPU-FPGA based design methodology for enhancing machine learning applications…

1 3

David Wright (2017) Improving electrical efficiency in your data center.
https ://www.datac enter knowl edge.com/archi ves/2014/09/23/
impro ving-elect rical -effic iency -data-cente r

Ganesh SS, Arulmozhivarman P, Tatavarti VSNR (2018) Prediction
of pm2.5 using an ensemble of artificial neural networks and
regression models. J Ambient Intell Hum Comput. https ://doi.
org/10.1007/s1265 2-018-0801-8

Google (2018) The MNIST matrix. https ://www.tenso rflow .org/versi
ons/r1.1/get_start ed/mnist /begin ners

Google (2019) TensorFlow. https ://www.tenso rflow .org/
Huang R, Feng W, Fan M, Guo Q, Sun J (2017) Learning multi-path

cnn for mural deterioration detection. J Ambient Intell Hum Com-
put. https ://doi.org/10.1007/s1265 2-017-0656-4

Intel (2018) Intel OpenCL development. http://www.innov atefp ga.com/
cgi-bin/innov ate/teams .pl?Id=PR029 &All=1

Kind T (2018) Tensorflow (TF) benchmarks. https ://githu b.com/tobig
ithub /tenso rflow -deep-learn ing/wiki/tf-bench marks

Lanfear T (2013) High performancecomputing with CUDA and Tesla
hardware. https ://intra net.birmi ngham .ac.uk/it/teams /infra struc
ture/resea rch/bear/docum ents/publi c/CUDA-2013-07-31/CUDA-
Tutor ial.pdf

LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-
based learning applied to document recognition. Proc IEEE
86(11):2278–2324

LeCun Y, Cortes C, Burges CJC (2018) The MNIST database. http://
yann.lecun .com/exdb/mnist /

Li Y, Liu Z, Xu K, Yu H, Ren F (2018) A gpu-outperforming fpga
accelerator architecture for binary convolutional neural networks.
J Emerg Technol Comput Syst 14(2):18:1–18:16. https ://doi.
org/10.1145/31548 39

Liu X, Ounifi HA, Gherbi A, Lemieux Y, Li W (2018) A hybrid gpu-
FPGA-based computing platform for machine learning. Proc
Comput Sci 141:104–111

Motamedi M, Gysel P, Akella V, Ghiasi S (2016) Design space explo-
ration of FPGA-based deep convolutional neural networks. In:
Proceedings of the 21st Asia and South Pacific Design Automa-
tion Conference (ASP-DAC), IEEE, pp 575–580

Nagarajan K, Holland B, George AD, Slatton KC, Lam H (2011)
Accelerating machine-learning algorithms on FPGAs using
pattern-based decomposition. J Signal Process Syst 62(1):43–63

Ounifi HA, Liu X, Gherbi A, Lemieux Y, Li W (2018) Model-based
approach to data center design and power usage effectiveness
assessment. Proc Comput Sci 141:143–150

Potluri S, Fasih A, Vutukuru LK, Al Machot F, Kyamakya K (2011)
CNN based high performance computing for real time image pro-
cessing on GPU. In: 2011 joint 3rd Int’l workshop on nonlinear
dynamics and synchronization (INDS) and 16th Int’l symposium
on theoretical electrical engineering (ISTET), IEEE, pp 1–7

Qiu J, Wang J, Yao S, Guo K, Li B, Zhou E, Yu J, Tang T, Xu N, Song
S et al (2016) Going deeper with embedded FPGA platform for
convolutional neural network. In: Proceedings of the 2016 ACM/
SIGDA international symposium on field-programmable gate
arrays, ACM, pp 26–35

Raina R, Madhavan A, Ng AY (2009) Large-scale deep unsupervised
learning using graphics processors. In: Proceedings of the 26th
annual international conference on machine learning, ACM, pp
873–880

Rush A, Sirasao A, Ignatowski M (2017) Unified deep learning with
cpu gpu and fpga technologies. In: Advanced Micro Devices,
Tech. Rep

Sharp T (2008) Implementing decision trees and forests on a GPU.
In: European conference on computer vision. Springer, Berlin,
Heidelberg, pp 595–608

Steinkraus D, Buck I, Y Simard P (2005) Using GPUs for machine
learning algorithms. In: Proceedings of the 8th international
conference on document analysis and recognition, IEEE, pp
1115–1120

Wang C, Gong L, Yu Q, Li X, Xie Y, Zhou X (2017) Dlau: a scalable
deep learning accelerator unit on FPGA. IEEE Trans Comput
Aided Design Integr Circ Syst 36(3):513–517

Zhao W, Fu H, Luk W, Yu T, Wang S, Feng B, Ma Y, Yang G (2016)
F-CNN: an FPGA-based framework for training convolutional
neural networks. In: Proceedings of the IEEE international con-
ference on application-specific systems, architectures and proces-
sors, pp 107–114

Zhu M, Liu L, Wang C, Xie Y (2016) Cnnlab: a novel parallel frame-
work for neural networks using gpu and FPGA—a practical study
with trade-off analysis. CoRR arXiv :1606.06234

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://www.datacenterknowledge.com/archives/2014/09/23/improving-electrical-efficiency-data-center
https://www.datacenterknowledge.com/archives/2014/09/23/improving-electrical-efficiency-data-center
https://doi.org/10.1007/s12652-018-0801-8
https://doi.org/10.1007/s12652-018-0801-8
https://www.tensorflow.org/versions/r1.1/get_started/mnist/beginners
https://www.tensorflow.org/versions/r1.1/get_started/mnist/beginners
https://www.tensorflow.org/
https://doi.org/10.1007/s12652-017-0656-4
http://www.innovatefpga.com/cgi-bin/innovate/teams.pl?Id=PR029&All=1
http://www.innovatefpga.com/cgi-bin/innovate/teams.pl?Id=PR029&All=1
https://github.com/tobigithub/tensorflow-deep-learning/wiki/tf-benchmarks
https://github.com/tobigithub/tensorflow-deep-learning/wiki/tf-benchmarks
https://intranet.birmingham.ac.uk/it/teams/infrastructure/research/bear/documents/public/CUDA-2013-07-31/CUDA-Tutorial.pdf
https://intranet.birmingham.ac.uk/it/teams/infrastructure/research/bear/documents/public/CUDA-2013-07-31/CUDA-Tutorial.pdf
https://intranet.birmingham.ac.uk/it/teams/infrastructure/research/bear/documents/public/CUDA-2013-07-31/CUDA-Tutorial.pdf
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1145/3154839
https://doi.org/10.1145/3154839
http://arxiv.org/abs/1606.06234

	A hybrid GPU-FPGA based design methodology for enhancing machine learning applications performance
	Abstract
	1 Introduction
	2 Related work
	3 Design methodologies
	3.1 The whole architecture and workflow
	3.2 The GPU training module
	3.3 The FPGA inferencing module
	3.4 Model converter
	3.5 Summary

	4 A case study on digital handwriting recognition with CNN classification
	4.1 Experiment environment
	4.1.1 Hardware environment
	4.1.2 Software environment

	4.2 The algorithm of CNN case
	4.3 The training module of CNN case
	4.3.1 The implementation
	4.3.2 The experiment results

	4.4 The inferencing module of CNN case
	4.4.1 The implementation
	4.4.2 The experiment results

	4.5 The model converter of CNN case
	4.5.1 The experiment results

	5 A case study on data center PUE with DNN regression
	5.1 The overview of the use case
	5.2 The dataset and the DNN regression algorithm of DNN case
	5.2.1 The dataset
	5.2.2 The architecture of DNN regression algorithm

	5.3 The training module of DNN case
	5.3.1 The implementation
	5.3.2 The experiment results

	5.4 The inferencing module of DNN case
	5.4.1 The implementation
	5.4.2 The experiment results

	5.5 The model converter of DNN case
	5.5.1 The experiment results

	6 Discussions
	7 Conclusion and future work
	Acknowledgements
	References

