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ABSTRACT Since multispectral images (MSIs) have much more sufficient spectral information than RGB
images (RGBs), reconstructing MS images from RGB images is a severely underconstrained problem.
We have to generate colossally different information between the two scopes. Almost all previous approaches
are based on static and dependent neural networks, which fail to explain how to supplement the massive
lost information. This paper presents a low-cost and high-efficiency approach, ‘‘VAE-GAN’’, based on
stochastic neural networks to directly reconstruct high-qualityMSIs fromRGBs. Our approach combines the
advantages of the Generative Adversarial Network (GAN) and the Variational Autoencoder (VAE). The VAE
undertakes the generation of the lost variational MS distributions by reparameterizing the latent space vector
with sampling from Gaussian distribution. The GAN is responsible for regulating the generator to produce
MSI-like images. In this way, our approach can create huge missed information and make the outputs look
real, which also solves the previous problem. Moreover, we use several qualitative and quantitative methods
to evaluate our approach and obtain excellent results. In particular, with much less training data than the
previous approaches, we obtained comparable results on the CAVE dataset and surpassed state-of-the-art
results on the ICVL dataset.

INDEX TERMS Generative adversarial network (GAN), variational autoencoder (VAE), VAE-GAN, normal
distribution, stochastic neural network, multispectral image, RGB image, image processing, color vision,
spectral reconstruction.

I. INTRODUCTION
Lights with different wavelengths have different reflection,
refraction, and transmission properties. People use Multi-
Spectral Images (MSIs) to record these differences. MSIs
consist of several channels or bands, and each band contains
the amount of radiation measured in a particular wavelength
range [1].

From MSIs’ abundant spectral information, many MSIs’
applications have been developed, such as land mine detec-
tion [2], satellite remote sensing [3], medical imaging [4],
weather forecasting [5], and interpretation of ancient docu-
ments and artworks [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Li Zhang .

Although MSIs have a wide range of applications, acquir-
ing them is a complicated, costly, and time-consuming pro-
cess, since MSIs have many bands that have to be taken one
by one. Moreover, obtaining each band’s data requires a spe-
cific wavelength lens to filter out other wavelength lights and
to be stored in a dedicated space. Therefore, much time and
storage space are consumed in changing the lens and saving
each band’s image. Moreover, we can synthesize RGBs with
high precision from MSIs according to the Color Matching
Functions [7]. From MSIs to RGBs, it is a straightforward
process.

On the contrary, RGB images only have three bands: red,
green, and blue. The three colors are used as the primary
colors to constitute other colors (different wavelength light).
Most of our daily used devices’ cameras can take RGB
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FIGURE 1. The schematic diagram of possible spectral space.

images, which are much more convenient and cheaper to
obtain. Hence, it is straightforward to consider reconstruct-
ing MSIs from RGBs directly. However, the reconstruction
process is very complex and challenging.

In order to illustrate this challenge, Figure 1 is the
schematic diagram that presents a preliminary idea of the
challenge. Supposing we have a 3-bands 512 × 512 RGB
image and a 31-bands 512×512MS image, the range of each
pixel value is from 0 to 255. According to information theory,
the maximum information contained by an RGB image is
− log 256512∗512∗3 (nats), while the maximum information of
anMS image is− log 256512∗512∗31 (nats). There is a vacancy
of more than 10 times between the two spaces, which turns
the reconstruction of MS images from RGB images into an
extremely underconstrained problem. Compared with RGB
images, MS images have a much higher spectral resolution,
which may cause a difficult problem of one RGB image
mapping to many MS images [8].

To tackle this problem, we propose a new approach in this
paper, whose fundamental concept is to replace the traditional
autoencoder with the VAE when implementing the generator
of the GAN and to add an L1 regulator to assist in training
the generator. The VAE brings in Gaussian noise by repa-
rameterizing the latent vector, which breaks the direct link
from the input to the output. Meanwhile, with sampling from
a continuous normal distribution, the generator could create
infinite variational outputMSI patterns. In this way, one RGB
image can generate unexhausted latent vectors, which can
create countless MS images. The adversary network helps the
generator make real-like MSIs and the L1 regulator collapses
multiple possible real-like results into one result. Following
the above flow, we can acquire the MS image that we desire.

The rest of the paper is organized as follows: Section II
presents some related work. Section III demonstrates the
proposed approach. Next, we perform several experiments
to evaluate the performance of the proposed method and
compare our results with state-of-the-art results in Section IV.
In Section V, there is a brief discussion about some limita-

tions of our approach. We summarize our current work and
introduce some future work in Section VI. In Appendix VI,
we provide all the detailed architectures of the neural network
involved.

II. RELATED WORK
MS image reconstruction is not a new field. Early in 2014,
Rang et al. tried to use synthesized RGBs after white balanc-
ing and the radial basis function (RBF) network to reconstruct
MSIs. This method behaves well when the reflectance and
illumination have a smooth spectrum. However, in the case
of a spiky spectrum, the approach yields poor results. Rang
et al.’s work also involves a limitation because they assumed
the use of a uniform illumination to illuminate the scenes [9].

In 2016, Arad et al. reconstructed hyperspectral images
using a sparse dictionary of hyperspectral signatures and
RGB projections. Although their results achieved state-of-
the-art, their approach had to make a hyperspectral prior by
sampling from each dataset image, restricting the fields of its
application. Also, its reconstruction quality relied heavily on
the scope and specificity of the hyperspectral prior [10].

These approaches are based on traditional solutions. Such
solutions have a common shortfall: they often have too many
prerequisites, such as the equipment and the illumination.
When the environment or the dataset changes, they need to
retune their model’s parameters. Deep learning approaches
do not have this shortfall. Once the neural network design has
been finished, we need to use only the new dataset to train the
neural work when the dataset changes. These are data-driven
approaches. Many researchers have tried to leverage this new
technology to solve the MSI reconstruction problem.

Early in 2017, Zhiwei et al. proposed HSCNN based
on CNN, which takes the spectrally upsampled image as
input and outputs the enhanced hyperspectral images. They
claimed their results significantly improved the state-of-the-
art. [11].

In 2018, by removing the hand-crafted upsampling in
HSCNN, Zhan et al. developed HSCNN+, which has two
kinds of networks, HSCNN-R and HSCNN-D. HSCNN-R
consists of several residual blocks, and HSCNN-D replaces
the residual blocks by a dense block with a novel fusion
scheme [12]. In the NTIRE 2018 Spectral Reconstruction
Challenge, HSCNN-D ranked first, and HSCNN-R ranked
second [13].

Meanwhile, in 2018, Berk et al. proposed three models
based on the Convolutional Neural Network (CNN): a generic
model, a conditional model, and a specialized model. The
generic model is a direct mapping from RGBs to MSIs. The
others two need additional networks to estimate or classify
the sensitivities. Moreover, they proved that efficiently esti-
mating the sensitivity function and conditioning the spectral
reconstruction model are useful for improving reconstruction
accuracy [14]. Although their approach ranked seventh in
the NTIRE 2018 Spectral Reconstruction Challenge, they
claimed their solution to be the most efficient, with the lowest
number of layers and shortest runtime.
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FIGURE 2. The comparison of the standard solution and the proposed solution.

Meanwhile, in 2018, Xiaolin et al. suggested utilizing
K-means classification to separate an RGB image into dif-
ferent classes according to their spectrums and then applying
backpropagation neural networks (BPNNs) to reconstruct the
corresponding hyperspectral image. Their approach had to
establish a mapping between the RGB and the MSI for each
class as a foundation [15].

Furthermore, at the 2019 CVPR workshop, Kin et al.
demonstrated a way of directly reconstructing MSIs from
RGBs by using conditional GAN. Since their method is
purely data-driven, it could easily lead to hallucinatory
results [16].

Meanwhile, some contributed solutions appeared at the
NTIRE 2020 Challenge on Spectral Reconstruction from
an RGB Image [17]. For example, Jiaojiao et al. proposed
a novel adaptive weighted attention network for spectral
reconstruction. They stacked multiple dual residual attention
blocks to build the backbone of the approach. Their entries
obtained first rank on the ‘‘Clean’’ track and third place on
the ‘‘Real World’’ track [18].

Although the above mentioned papers have achieved some
progress in reconstructing MSIs from RGBs, almost all the
methods except Kin et al.’s are based on static and dependent
neural networks. Since there are no random elements in their
neural networks, their models cannot generate new infor-
mation or previously unseen distributions. Thus, they failed
to answer the crucial question: how to supplement the lost
information between RGBs and MSIs with their approaches.
However, in the following sections, we will answer it with our
work.

III. THE PROPOSED METHOD
A. THE PROBLEM ANALYSIS AND THE PROPOSED
SOLUTION
From the previous introduction, we know that the tremendous
challenge of reconstructing MSIs from RGBs is how to use
a small spectral space to represent an ample spectral space.
It is a severely underconstrained problem that will result in the
metamerism phenomenon [19]. Themain idea ofmetamerism
is that different multispectral distributions map to the same
RGB distribution. Thus, the metamerism prevents the syn-
thesis of the correct MSIs from the RGBs, since different
MSI labels with the same RGB input may cause the gradient
to descend in different directions and lead to problematic
convergence. Figure 2 (a) is the standard solution based on
Auto Encoder, one RGB pixel maps to one latent vector; and
the latent vector maps to many MS pixels, which make the
model training hard to converge. It is also very similar to a
multi-directional tug of war; as different teams of people exert
force in different directions, the center of the rope swings in
different directions.

Since the problem has been described clearly, the solution
is also apparent: try to create more variational inputs to map
to multiple outputs to reduce the input entanglement effect.
There are two places to add variations. One is on the input
side, and the other is in the latent space. However, if we add
the variations on the input side, they are easily ignored. The
explanation is that the structure of the Auto Encoder is good at
denoising, since it compresses the input information, includ-
ing the variations, and the minor variations are easily thrown
out in the compression process. Several authors also have
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FIGURE 3. The detailed implementation of the proposed method.

reported this phenomenon [20], [21]. Meanwhile, we have
verified this side effect in our experiments. However, if we
insert the noises (variations) in the latent space, they escape
the lossy compression process and are enlarged directly by
the decoder. To this end, we strive to add variations to the
latent vector.

Figure 2 (b) depicts our proposed solution. We use the
Variational Auto Encoder instead of the typical Auto Encoder.
In this way, one RGB pixel still maps to one latent vec-
tor in the first phase. However, this latent vector will be
re-parametered into several different latent vectors by later
random sampling from the normal distribution. The number
of re-parametered latent vectors can be unlimited, greater
than the limited number of possible MSI pixels. Therefore,
each input with one random latent vector can map to at
least one output. The re-parameterization step turns the input
space from limited into unlimited. Furthermore, with the re-
parameterization step, the proposed approach is equivalent to
building a bridge between the two deterministic networks,
encoder and decoder, and making the gradients backprop-
agate from output to the input. In this way, the previous
underconstrained problem can be solved.

B. THE DETAILED IMPLEMENTATION OF THE PROPOSED
METHOD
1) THE MODEL’s ARCHITECTURE
According to the previous analysis, we designed a special
GAN, as shown in Figure 3. The most significant difference
from the typical GAN is that we used the VAE to substitute
the AE. The AE has a fixed latent space, which means that

the model’s parameters are fixed when the training finishes.
One input can lead to only one specific output. Because of
the fixed neural network, when the metamerism phenomenon
occurs, different labels with the same input cause the gradient
to descend in different ways and make the training process
challenging to converge. It is difficult to learn the right map-
ping between the input and the output.

Figure 3 shows that the proposed approach consists of
three main parts: encoder, re-parameter, and decoder. The
encoder is a neural network that compresses an input sample
RGB1 into a hidden representation µ-mean vector and a σ -
standard deviation vector. And φ stands for the weights and
biases. We denote the encoder by qφ(z|rgb). And then, we re-
parameterize the latent space vector z with Equation (1).
In Equation (1), ε is sampled from the normal distribu-
tion N (0, I ) and supplies the variations to generate diverse
latent space vectors ‘‘z1, z2, . . . , zn’’. The decoder is another
neural network that generates possible MSI distributions
‘‘MSI ′1,MSI

′

2, . . . ,MSI
′
n’’ with varied εns ‘‘ε1, ε2, . . . , εn’’,

and θ denotes the weights and biases. We denote the decoder
with pθ (msi|z).

z = µ+ σ � ε

ε ∼ N (0, I ) (1)

From Equation (1), it can be seen that all the variations
of latent space vector z are from sampling the normal dis-
tribution. The normal distribution can make the VAE latent
space have a continuous variation compared with the AE
fixed latent space. An input produces different latent vectors,
and the decoder creates corresponding variational outputs
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with these variations. In this way, each input is tagged with
a random Gaussian noise number label and re-parameterized
into a unique latent vector; and one latent vector generates one
particular output. Besides, the Gaussian distribution space is
infinite, which guarantees that one latent vector can map to at
least one output. The latent space will finally be disentangled.

2) THE MODEL’s TRAINING
As noted above, our approach has three main parts: encoder,
re-parameter, and decoder, which constitute the generator.
To train the generator, we use the adversary network and
Kullback–Leibler divergence (KL divergence) together.

Specifically, in order to get the generator, we designed
3 losses to train the model: Loss of VAE-LVAE , Loss of
discriminator-LD, and Loss of GAN-LGAN .

LVAE = −Ez∼qφ (z|rgb)[log pθ (msi|z)]
+βKL(qφ(z|rgb)||pθ (z|msi)) (2)

Ez∼qφ (z|rgb)[log pθ (msi|z)] =
∥∥MSI −MSI ′∥∥1 (3)

Equation (2) is the definition of LVAE , which contains a
negative log-likelihood reconstruction loss, a KL divergence
regularizer and a hyperparameter β. Equation (3) is the imple-
mentation of the reconstruction loss, and here we use the
Mean Absolute Error (MAE) to calculate the error between
the generated MSI and the original MSI. If the decoder fails
to re-build theMSIs well, this loss becomes large. In this way,
this loss helps the decoder learn to reconstruct the MSIs.

Meanwhile, the KL divergence measures how much infor-
mation is lost when using qφ(z|rgb) to represent pθ (z|msi).
It also shows how close qφ(z|rgb) is to pθ (z|msi). In the VAE,
pθ (z|msi) respects the standard normal distribution N (0, I ).
The encoder will receive a penalty in the loss if the out-
put representations pθ (z|msi) are different from those from
the standard normal distribution. Meanwhile, this regularizer
tries to keep the representations pθ (z|msi) of each datapoint
sufficiently different. Without the regularizer, the encoder
could learn to cheat and give each input RGB pixel the same
representation in a different Euclidean space region [22].

Furthermore, β is the regularization coefficient that tunes
the available ratio of negative log-likelihood reconstruction
loss and KL divergence. Higher β means the KL divergence
will take more role, which will bring in more variations but
more noise [23].

LGAN = Ergb∼pdata(rgb)[log(1− D(G(rgb)))] (4)

In addition to Equation (2), we use an adversarial network
to train the generator. Equation (4) defines the loss of gener-
ator. It works like other GANs by trying to cheat the discrim-
inator and letting the discriminator think the generated MS
images are real.

LD = Emsi∼pdata(msi)[logD(msi)]
+Ergb∼pdata(rgb)[log(1− D(G(rgb)))] (5)

Equation (5) represents the loss of the discriminator, which
consists of two log-likelihood parts. The former tries to use

TABLE 1. The hardware list. [25], [26].

TABLE 2. The software list.

FIGURE 4. The relation between model performance and training
data. [27].

the realMSI to train themodel, and the latter allows themodel
learn fake examples from the results of the generator.

Combining all the above losses, we obtain the total
loss LTotal (6). There are 2 hyper-parameters, β, γ , which
have different impacts on the training process. β tunes the
ratio of KL divergence, γ adjusts the GAN’s functional per-
centage. If we want the KL divergence to have more effects,
we need to increase the value of β; and if we want to use
the GAN more to train the generator, we need to tune up the
γ . GAN and KL divergence have different advantages and
disadvantages for training the model. We will give a detailed
discussion and analysis in the Section V.

LTotal =
∥∥MSI −MSI ′∥∥1 + βKL+ γLGAN (6)

IV. EXPERIMENTS
To thoroughly evaluate our approach, we selected two classi-
cal datasets: CAVE [24] and ICVL [10]. The detailed exper-
iment description and results are in the following sections.

A. EXPERIMENT ENVIRONMENT
We list the hardware devices used in Table 1 and the software
involved in Table 2.

In this project, our graphic card is NVIDIA TITAN Xp.
Its architecture is Pascal and has 3840 parallel computing
cores. Each core has a 1582 MHz frequency. Its memory is
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FIGURE 5. The reconstruction of five selected spectral bands using an RGB image. (The input RGB is the top left
image of Figure 6.)

FIGURE 6. The reconstruction of five selected RGB images using MS images.

made of 12 GB GDDR5X, and its speed achieves 11.4 Gbps.
The bandwidth attains a high point of 547.7 GB/s. According
to our previous research results, the GPU’s training speed is
about 10 times faster than the CPU’s [25], [26].

B. THE CAVE DATASET
1) THE DATASET INTRODUCTION AND THE
HYPERPARAMETER SETTING
Columbia University Computer Vision Laboratory made the
CAVE dataset. The CAVE dataset has 32 indoor scenes,
including 5 categories: stuff, skin and hair, paints, food and
drinks, real and fake. Moreover, each image consists of a
31-band MS image and a 3-band RGB image. The 31 bands

cover visible light from 400nm to 700nm at 10nm steps. The
spatial resolution of each band is 512× 512 pixels [24].

First, we convert the CAVE dataset from 32 (scenes) ×
34 (bands) png images into a 32 (samples) × 512 (height)
× 512 (width) × 34 (band-columns) numpy array, where the
1-31 columns map to the 400nm-700nm bands. Meanwhile,
the 32-34 columns match the R, G, B bands individually.

Then, we split the dataset into two equal-size groups
according to the image’s index in the dataset. Images with odd
indexes, 1, 3, 5, . . . , 31, are put in one group; images with even
indexes, 2, 4, 6, . . . , 32, are put in another group. We rotate
these two groups to be the training dataset and the evalu-
ating dataset to thoroughly verify our approach. Generally
speaking, more training data often lead to a higher perfor-
mance model. Andrew Ng has given a detailed explanation
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FIGURE 7. The RMSE curves of MSI reconstruction.

with Figure 4 in his book ‘‘Machine learning yearning’’ [27].
So, the most frequent ratio of training and evaluation is
80%:20% or 70%:30%. However, the more training data
required, the fewer application domains the approach has.
We choose a more challenging dataset split ratio, 50%:50%.
Only a few works, like Kin et al.’s [16], have chosen this
kind of split ratio to the best of our knowledge. Moreover,
the approach of Kin et al. also contains a GAN loss like ours.
Therefore, we use their work as the primary baseline. We also
compare our results with Arad et al.’s and Berk et al.’s, since
Arad et al. claimed their results are state-of-the-art [10] and
Berk et al. claimed theirs is the first successful estimation
of the spectral data from a single RGB image captured in
unconstrained settings [14].

To thoroughly evaluate our method and compare it with the
previous baseline, we also performed bi-directional transla-
tions between RGBs and MSIs and conducted qualitative and
quantitative evaluations, respectively.

Furthermore, we normalized the data from the range [0.0-
1.0] to [−1.0-1.0] before training and recovered the image

data to [0.0-1.0] after training. After many trials, we found
that the best setting to train the generator: β = 0, γ = 10,
the training epoch is 300, and the optimizer is Adam with the
learning rate 1e−4.

2) THE QUALITATIVE EVALUATION
In this subsection, the qualitative results of the two phases:
RGB to MSI and MSI to RGB, are shown. Since we chose
Kin et al.’s work [16] as the baseline, all the selected images
and training configurations are the same as theirs.

Figure 5 shows the result of the RGB to the MSI. We chose
image ‘‘beads’’ and selected 5 spectral bands to reconstruct
the MSI from the RGB image. To make the paper’s layout
look tidy, we put the ground truth input RGB image in Fig-
ure 6 top left. Moreover, we selected the same five bands as
Kin et al. did to compare the results equally. The five bands
are between 400nm and 700nm with approximately equal
intervals. Since it is hard to identify nearbywavelength lights’
subtle differences with the naked eyes, the five bands are
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FIGURE 8. CIE 1931 color matching functions [28].

enough to demonstrate the qualitative evaluation of spectral
reconstruction. Furthermore, it is a prevalent way to select
several bands to show qualitative results [10], [14]. Other-
wise, in the quantitative evaluation section, we demonstrate
the full RMSE varieties against the whole spectrum (400nm-
700nm) reconstruction results in Figure 7.

Besides, we got Error maps using the prediction image
minus the ground truth image and then pseudocolored the
error images with the ‘‘jet’’ colormap. Red, green, and blue
indicate negative, zero, and positive errors, respectively. After
comparing our results with Kin et al.’s work, we found that
our model behaves better than theirs, especially in the 410nm,
550nm, and 590nm bands.

Moreover, we can quickly reconstruct the RGB images
from MS images with a similar neural network when we
reverse the input and output of the VAE generator and make
some small changes, such as resetting the input and output
size. Figure 6 is the result of reconstructing the RGB from
the MSI. We find that the reconstructed RGB images and
ground truth images are too close to judge with the naked
eyes. Furthermore, the reconstruction behaves better than Kin
et al.’s work [16].

3) THE QUANTITATIVE MEASUREMENT
To compare our results fairly with the related work, we chose
three classical quantitative metrics: Root Mean Square
Error (RMSE), Peak Signal-to-Noise Ratio (PSNR), and
Structural Similarity Index (SSIM), to evaluate our model’s
performance.

As stated above, we practiced with 16MS and RGB images
with the odd number position to train the model and another
16 scenes with the even number position to test themodel, and
vice versa. We performed the previous process 3 times and
then calculated the average value. Furthermore, the recon-
struction experiment is bi-directional, which means that we
measure the results of converting both the RGB to the MSI
and the MSI to the RGB. In order to highlight the compar-
ison easily, we include our results with Berk et al.’s [14],
Kin et al.’s [16], and Arad et al.’s [10] in the Table 3 and
Table 4, respectively.

TABLE 3. The average RMSE, PSNR and SSIM of reconstructing MSI from
RGB.

TABLE 4. The average RMSE, PSNR and SSIM of reconstructing RGB from
MSI.

From Table 3, it can be seen that Arad et al. have the
lowest RMSE. However, our results are very close to theirs
and rank second. For this result, we provide the following
explanation.

First, the ratio of splitting the CAVE dataset for training
and evaluation is not explicit in Arad et al.’s paper. As noted
above, in most cases, more training data usually yield a higher
performance model.

Second, before reconstruction, their method had to make
a hyperspectral prior by sampling from each image. The
sampling ratio of the CAVE dataset is 3.8% of each image.
Their approach needs to gather information from the whole
dataset, including the training dataset and the test dataset,
which will help their model improve its performance. How-
ever, the requirements for more information will limit the
application scope of their approach. On the contrary, the ratios
of Kin et al. and our approaches are 50% for training and
50% for testing. The training dataset and the testing dataset
are entirely isolated, which means that the model knows
nothing about the test dataset when doing the testing. So,
our approaches’ application fields will be more prevalent.
Given the above analysis, it is not fair to compare our and
Kin et al.’s results with Arad et al.’s results. By comparing
our results with Kin et al.’s, it can be seen that the RMSE
of reconstructing the MSI from the RGB has been reduced
by 29%, and the RMSE of reconstructing the RGB from the
MSI has been reduced by 66%.

Besides, we selected the same six images as Kin et al.
did in their paper [16]: ‘‘Beads,’’ ‘‘Food,’’ ‘‘Strawberries,’’
‘‘Sponges,’’ ‘‘Superballs,’’ and ‘‘chart & Stuffed Toy’’ to
calculate their RMSEs of MSI 31 bands reconstruction and
draw the curves of RMSEs against the wavelengths in the
Figure 7.
Figure 7 reveals that the model behaves with different

prediction abilities when facing different scenes. Moreover,
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FIGURE 9. The reconstructions of three selected spectral bands images of two scenes. (The two input RGBs are the
top left two images of Figure 10.)

FIGURE 10. The reconstruction of five selected RGB images using MS images.

the model performs better when reconstructing a band image
whose wavelengths are in the middle range. Our explanations
are as follows. From Figure 8 CIE 1931 standard observer
color matching functions [28], we notice that most of R, G,
and B components are distributed principally from 450nm to
650nm wavelengths and a few ingredients are allocated to
near the two ends of the spectrum. A color pixel constituted
of R, G, and B bands holds little information about the two
ends of the spectrum, whichmay cause the low reconstructing
ability at the two ends of the spectral zone.

C. THE ICVL DATASET
1) THE DATASET INTRODUCTION AND THE
HYPERPARAMETERS SETTING
The Ben-Gurion University interdisciplinary Computational
Vision Lab made the ICVL dataset. The latest version

contains 201 images (Most scenes are outdoor.) taken by
a Specim PS Kappa DX4 hyperspectral camera. More-
over, each image has 1392 × 1300 spatial resolution over
519 spectral bands (400−1, 000nm at roughly 1.25nm incre-
ments) [10].

In the experiment, we used the reduced ICVL dataset sup-
plied by Arad et al. They reduced the 519 bands to 31 bands
of roughly 10 nm in 400–700 nm for two reasons: reducing
computational cost and facilitating comparison to previous
benchmarks that employ this kind of representation [10].
Moreover, we calculated the RMSE between the RGB image
generated by 519 bands and the RGB image generated by
31 bands. The RMSE is about 0.00014, which means the two
formats have few differences.

To evaluate our approach thoroughly and non-overlappingly,
we first randomized the order of 201 images and then divided
them into 6 groups. Each of the first 5 groups, 0, 1, 2, 3, 4, has
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32 images. However, the sixth group, group 5, has 41 images.
We rotated one of the first five groups, 0− 4, as the training
dataset and the remain five groups as the testing dataset. For
example, if we take group 1 as the training dataset, groups
0, 2, 3, 4, and 5 are the testing dataset, which means that the
training and testing dataset splitting ratio reaches 32 : 169,
32 images for training and 169 images for testing.

We split each training dataset of 32 images into two equal
subgroups according to the images’ index in the dataset.
Images with odd indexes, 1, 3, 5, . . . ,31, are put in one
subgroup, whereas images with even indexes, 2, 4, 6, . . . ,32,
are put in another subgroup. We rotate these two subgroups
to be the training dataset and the validating dataset.

Furthermore, we reduce the 32 training images’ spatial
resolution from 1392 × 1300 to 512 × 512 by sampling
randomly one of the four parts (top left, top right, bottom left,
bottom right) of the original image. The final training dataset
consists of 32 images with a spatial resolution of 512× 512.
Meanwhile, the testing dataset includes 169 images with a
spatial resolution of 1392 × 1300. To the best of our knowl-
edge, we are the first to use so few images to train the ICVL
model.

To thoroughly evaluate our method, we also performed
bi-directional translations between RGBs and MSIs and
conducted quantitative and qualitative evaluations. Besides,
we selected three related excellent works, Zhiwei et al. [11],
Arad et al. [10], and Berk et al. [14], for comparison. Among
them, Zhiwei et al.’s HSCNN claimed their results were state
of the art.

Furthermore, we normalized the data from the range [0.0-
1.0] to [−1.0-1.0] before training and recovered the image
data to [0.0-1.0] after training. After many trials, we found the
best setting to train the generator: β = 0, γ = 10, the training
epoch is 300, and the optimizer is Adamwith the learning rate
1e−4.

2) THE QUALITATIVE EVALUATION
In this subsubsection, we continue to demonstrate the quali-
tative results of the two reconstruction phases: RGB to MSI
and MSI to RGB. We emphasized again that the training data
is completely isolated from the testing data.

Since Arad et al. created the ICVL dataset and claimed
their results are state-of-the-art, we chose their results as
the baseline. Figure 9 is made like Arad et al.’s Fig-
ure 4. We selected the same two scenes and the same
three bands (460nm, 540nm, and 620nm) to demonstrate our
model’s reconstruction performance. To make the paper’s
layout look tidy, we put the two ground truth input images in
the top left first image ‘‘prk_0328-1025’’ and top left second
image ‘‘BGU_0403-1419-1’’ of Figure 10.
Moreover, we got Error maps using the prediction image

minus the ground truth image and then pseudocolored the
error images with the ‘‘jet’’ colormap. Red, green, and blue
indicate negative, zero, and positive errors, respectively.

When comparing Figure 9 and Figure 10 with Figure 5 and
Figure 6, a phenomenon can be easily observed; the same

approach works better on the ICVL dataset than on the CAVE
dataset. Our explanation is that most of the CAVE dataset
images contain large dark background areas, which provide
little information for training the model.

3) THE QUANTITATIVE MEASUREMENT
To compare our work fairly with the previous work,
we chose four classical quantitative metrics: Root Mean
Square Error (RMSE), Normal or Relative Root Mean
Square Error (nRMSE or rRMSE), Peak Signal-to-Noise
Ratio (PSNR), and Structural Similarity Index (SSIM),
to evaluate our model’s performance.

Moreover, we prepare two experiments and several
comparisons with the state-of-the-art to demonstrate our
approach’s superiority.

In the first experiment, we compared our approach, VAE-
GAN, with the two state-of-the-art studies: Arad et al.’s
‘‘sparse coding’’ and Zhiwei et al.’s HSCNN. For equal
comparison, we did some processes on the ICVL dataset.

According to the report from Arad et al., the whole experi-
ment was conducted on the ‘‘complete set’’ of 102 images.
After double-checking, we found that image ‘‘lst_0408-
0924’’ does not exist in their supplied dataset [29]. So,
we deleted image ‘‘lst_0408-0924’’ from the complete set.
The number of the complete set images thus became 101.
Moreover, 59 domain-specific images belong to the 101
images. There are 5 domains, or subsets: Park, Indoor, Urban,
Rural, and Plant-life. Arad et al. selected one image from
a set for testing and the rest of the set images to train the
dictionary. Furthermore, they repeated the previous step until
every image in the set had been chosen for testing. In the last
step, they calculated the average relative RMSE (rRMSE). In
this way, Arad et al. achieved better results in the domain-
specific subsets than with the complete set [10].

Zhiwei et al.’s HSCNN performed in a more generalizable
way. They used a total of 200 images, including the complete
set to train a CNN model with 141 images, excluding the
domain-specific subsets. They tested the model on the 59
domain-specific images. Then, they trained another model
with 159 images, excluding the non-domain-specific images
in the complete set, and tested the obtained model on these
41 images. In this way, the images for training and test-
ing were rigorously separated, and HSCNN eliminated the
domain-specific restriction imposed in sparse coding [11].

Our dataset splitting is similar to Zhiwe et al.’s but has
more challenges. We used the up to date dataset, which
contains 201 images.Moreover, we used only the 100 images,
excluding the 101 complete set’s images to train the model.
We then tested the model on the 101 complete set images,
including the 59 domain-specific images. In this way, we iso-
lated the training and testing images rigorously, eliminated
the domain-specific restriction, and reduced the number of
training images.

Table 5 compares the results of the above three approaches.
We find that our approach, VAE-GAN, surpasses the two
other approaches in the complete set and most of the subsets
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TABLE 5. The comparison of RGB to hyperspectral conversion.

TABLE 6. The bi-directional conversion results of VAE-GAN on ICVL
dataset.

TABLE 7. The CAVE-RMSE changes against the β variations.

TABLE 8. The ICVL-RMSE changes against the β variations.

TABLE 9. The generator of RGB_to_MSI.

in the table. Moreover, this record was created with the lowest
ratio of training and testing.

In the second experiment, we handled an extreme chal-
lenge to thoroughly explore our approach’s full capac-
ity. We did not use the above tactic of splitting the
dataset. Rather, we used the splitting tactic introduced in
subsubsection IV-C1.

TABLE 10. The discriminator of RGB_to_MSI.

TABLE 11. The generator of MSI_to_RGB.

TABLE 12. The discriminator of MSI_to_RGB.

We randomized the order of 201 images and then divided
them into 6 groups. Each of the first 5 groups, 0, 1, 2, 3,
4, has 32 images. The sixth group, group 5, has 41 images.
We rotated one of the first five groups, 0− 4, as the training
dataset and the remain five groups as the testing dataset. For
example, if we take group 1 as the training dataset, groups 0,
2, 3, 4, and 5 are the testing dataset, which means the training
and testing dataset splitting ratio reaches 32 : 169, 32 images
for training and 169 images for testing.

Moreover, we split each training dataset 32 images into two
equal subgroups according to the image’s index in the dataset.
Images with odd indexes, 1, 3, 5, . . . ,31, were put into one
subgroup, and images with even indexes, 2, 4, 6, . . . ,32, were
put in another subgroup. We rotated these two subgroups to
be the training dataset and the validating dataset.

Furthermore, we reduced the 32 training images’ spatial
resolution from 1392 × 1300 to 512 × 512 by sampling
randomly one of the four parts (top left, top right, bottom left,
bottom right) of the original image. The final training dataset
consists of 32 images with a spatial resolution of 512× 512.
And the testing dataset includes 169 images with a spatial
resolution of 1392 × 1300. To the best of our knowledge,
we are the first to use so few images to train the ICVL model.

With the above training and testing tactic, we got the exper-
imental results of RGB to MSI conversion and MSI to RGB
conversion, respectively; these results are listed in Table 6.
This is the first novel experiment with this kind of dataset
splitting to achieve the best results to our knowledge. In com-
parison with previous CAVE results, Table 3 and Table 4,
it can be quickly seen that the ICVL results are much better
than the CAVE results, which is consistent with the previous
ICVL Qualitative results’ analysis.
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FIGURE 11. The RMSE curves of MSI reconstruction.

FIGURE 12. The RMSE against the β.

Besides, we selected three images: ‘‘prk_0328-1025’’,
‘‘BGU_0403-1419-1’’, and ‘‘eve_0331-1606’’ to calculate
their MSI reconstruction RMSE of 31 bands individually
and drew their RMSE curves in the Figure 11. ‘‘prk_0328-
1025’’ and ‘‘BGU_0403-1419-1’’ appeared in Arad et al.’s
paper [10], and Zhiwei et al. adopted ‘‘eve_0331-1606’’ as
an example [11].

It is worth noting in considering Figure 11, that the model
behaves worse in the long-wavelength range. Our explanation
of that phenomenon is that because the three images were

taken outdoors in daylight, the light with long wavelengths
was rapidly immersed in the background noise.With a regular
camera, it is hard to capture the subtleties of long-wavelength
light. Thus, because the RGB image contains few features
of long-wavelength light, which is the chief reason for the
poorMSI reconstruction performance in the long-wavelength
spectral zone.

V. LIMITATIONS
VAE-GAN has many hyperparameters. Therefore, there are
numerous means of optimizations.

For example, we used two losses, KL-divergence and
GAN, to train the model; however, we did not know which
is better. β is the key hyper-parameter, which can tune the
functional percentage of the two losses. We performed two
interesting experiments to investigate how the model’s recon-
struction ability alters with β’s change on the CAVE and
ICVL datasets, respectively.

Table 7 is the experiment data for the RMSE change against
the β variations on the CAVE dataset, and Table 8 is the data
for the RMSE change against the β variations on the ICVL
dataset. Furthermore, for convenient visual and comparison
purposes, we included the above two tables’ data in Figure 12.
From them, we can find a common rule: The model’s pre-

diction performance will decrease as the value of β increases,
which indicates the GAN loss has a better efficiency on
training the generator to synthesize real-like MSIs or RGBs.
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For the above phenomenon, we explain that KL-divergence
tunes the encoder by forcing the latent vector of z generated
to be close to the normal distribution. The learning gradi-
ents only pass through the encoder. Only the encoder has
to be updated. However, GAN adjusts the whole generator
network, including the encoder and decoder, by making the
outputs more like the real ones. The gradients go through
the whole generator. The decoder and encoder have to be
updated together. So, the GAN has higher efficiency to train
the generator.

However, the above explanation is only our hypothesis; it
lacks a strong theory and experimental supports. We need to
undertake further research to address this problem soon.

VI. CONCLUSION AND FUTURE WORK
In this paper, we first introduced the challenge of MSIs’
reconstruction from RGBs and the related works’ common
shortages. Because their approaches are based on static and
dependent neural networks, they cannot generate new varia-
tions to supplement the lost information between the MSIs
and RGBs. Next, we analyzed the bottle neck of the problem
and elaborated on our proposed approach, which leverages re-
parameterizing latent vectors and GAN tricks to create new
variational MSI-like images. In this way, one latent vector
can evolve into many latent vectors respecting the normal
distribution. One input RGB image with random latent space
vectors can be created out of the lost possible multiple out-
puts. We then used the GAN and L1 regulator to make the
possible multiple outputs convergence into one real-like MS
image output. Thus, we were able successfully to solve the
metamerism problem and transform the one-to-many prob-
lem into a one-to-one problem by bringing in random latent
vectors. We used qualitative and quantitative methods to
evaluate our approach to the CAVE and ICVL datasets. With
much less training data than the previous approaches, we got
comparable results on the CAVE dataset and surpassed the
state-of-the-art results on the ICVL dataset.

In the future, we plan to conduct more research on optimiz-
ing the hyperparameter settings.Wewill expand our approach
to more datasets to verify its versatility.

APPENDIX
THE DETAILED NEURAL NETWORK ARCHITECTURE
In this section, we list all the detailed structures of the neural
networks dealt with in Section III in Tables 9, 10, 11, and 12
respectively. The training batch size is 10240 and the testing
batch size is 262144 (512× 512). The training epoch is 300.
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