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Abstract

The ubiquitous Internet of Things (IoT) sys-
tem is a key component of future 6G networks 
to realize a fully connected world. Extensive 
efforts have been made to provide on-demand 
traffic scheduling in IoT networks through 
machine learning algorithms. However, the cur-
rent learning approaches are hindered by the 
heterogeneous information in ubiquitous IoT sys-
tems since the data are collected from different 
domains (e.g., space, air, ground, and ocean). 
To uncover the complete picture of ubiquitous 
IoT, this article presents a novel federated imi-
tation learning framework for traffic prediction 
without compromising privacy. This framework 
contains a knowledge-sharing module to imi-
tate the status of cross-domain models. After 
that, we design a distributed resource allocation 
algorithm, where the IoT devices cooperatively 
make association decisions using matching the-
ory. Simulation results reveal that our proposed 
approach outperforms state-of-the-art federated 
transfer learning and achieves desirable traffic 
scheduling performance in a cross-domain envi-
ronment.

Introduction
With the recent breakthroughs in sixth-generation 
(6G) communication networks, the world will wit-
ness a considerable shift in almost every aspect of 
our life [1, 2]. Numerous devices, such as health-
care wearables, patrol drones, and smart water 
quality monitoring sensors, are joining the Internet 
of Things (IoT) network [3]. Undoubtedly, ubiqui-
tous IoT in the 6G era is expected to connect to 
anyone and anything.

In such a vast IoT network, ranging from the 
domains of space, air, ground, and ocean, artificial 
intelligence (AI) is considered the most promising 
paradigm to solve the traffic scheduling problem 
[4–6]. To allow AI algorithms to offer decision 
support suitable for precision traffic scheduling 
implementations, large amounts of heterogeneous 
user data collected from different sensors are nec-
essary. For example, training a traffic prediction 
model requires a large database encompassing 
the full traffic header information, timestamp, and 
input data types. Another challenge of applying AI 
to 6G ubiquitous IoT networks is that collecting, 
curating, and maintaining a high-quality dataset 

takes considerable time, effort, and expense. It is 
difficult to train an efficient and practical AI model 
using only one data owner’s data.

Recently, federated learning (FL), as an emerg-
ing decentralized AI framework, is proposed to 
address the above challenges by training a shared 
model in several participating devices [7]. FL 
enables extracting traffic features without mov-
ing user data out of where they reside. Instead, 
the distributed data collection and storage system 
reduces the costs of daily maintenance. Many 
studies have shown that models trained by FL can 
achieve a performance level equivalent to ones 
trained by centralized approaches [8–10]. Thus, 
FL holds significant potential for enabling traffic 
prediction in 6G ubiquitous IoT networks. 

Nevertheless, FL also faces many critical chal-
lenges, including but not limited to data hetero-
geneity and training fairness. These challenges 
may lead to a situation where an optimal global 
model may not be suitable for a specific local par-
ticipant. More recent research has begun to fill 
this gap from a transfer learning perspective [11, 
12]. These approaches are generally proposed to 
improve target predictors’ performance on target 
domains by transferring the knowledge contained 
in different but related domains. However, the 
difference between domains in 6G ubiquitous IoT 
systems is enormous. It is not possible to directly 
apply transfer learning technology in such a com-
plicated environment.

In this article, we present a federated imi-
tation learning framework to improve learn-
ing performance in ubiquitous IoT networks 
while guaranteeing security and user privacy. 
It adds a knowledge-sharing module to consult 
the parameters of well-trained models. Thus, 
the knowledge can be shared in different IoT 
domains via fusion. Then we delineate a decen-
tralized scheduling approach. This approach 
allows global traffic scheduling across ubiqui-
tous IoT domains that capitalize on matching 
theory. The distributed implementation of the 
traffic scheduling algorithm eliminates the need 
for a central entity. 

Overall, the main contributions of this article 
can be summarized as follows:
1.	Developing a knowledge-sharing module to 

imitate well-trained models’ status in differ-
ent domains, thereby realizing cross-domain 
knowledge sharing.
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2. Elaborating a distributed scheduling approach 
based on matching theory, where the traffi  c 
can be scheduled via an IoT devices prefer-
ence list.

3. We explore how federated imitation learn-
ing may provide a solution for future traffic 
scheduling in 6G ubiquitous IoT systems, and 
highlight the challenges and future directions.
The rest of this article is organized as fol-

lows. We first introduce the structure of ubiqui-
tous IoT networks and present the motivations 
and challenges of FL deployment. Next, the 
knowledge-sharing framework is presented for 
cross-domain traffi  c prediction. We then propose 
a matching-based scheduling approach to allocate 
resources in a heterogeneous environment eff ec-
tively. Simulation results are then shown. Further 
discussion of the future directions is provided. 
Finally, we conclude the article in the fi nal section.

Fl In ubIQuItous Iot netWorKs:
motIVAtIons And cHAllenGes

This section introduces a novel paradigm for 6G 
ubiquitous IoT, and presents the motivations and 
core challenges of large-scale deployment of FL in 
6G scenarios. 

system ArcHItecture
As depicted in Fig. 1, the ubiquitous IoT system 
comprises four main domains: space, air, ground, 
and ocean. These four domains can work as 
large-scale integrated networks or independent 
segments. This system allows traffic scheduling 
among peer IoT devices in an ad hoc manner. 
For example, in Fig. 2, space and air nodes only 
need to update the parameters of the global 
model with local datasets, and to send the training 
results to the cloud, which aggregates the global 

model. This training process is repeated until the 
performance of the local model can satisfy the 
customized needs of users. Furthermore, diverse 
connection methods, including interconnections 
and intraconnections, help deal with the hetero-
geneous IoT networks.
1. Space domain: A space network consists of 

several satellites and their supporting infrastruc-
tures, such as ground stations and operation 
control platforms. The satellites, according 
to their altitude, are indifferent orbits with 
different functions. At an altitude of 35,786 
km, geostationary Earth orbit (GEO) has the 
broadest coverage and the most prolonged 
transmission delay. Medium Earth orbit (MEO) 
appears at an altitude of 3000 km to provide 
navigation services (e.g., American’s GPS and 
China’s Beidou). Low Earth orbit (LEO) has the 
lowest orbit, only 200–3000 km. The LEO con-
stellations could provide detection and com-
munication services with less delay, but require 
complicated ground control systems. By inte-
grating diff erent satellites into the system, dif-
ferent orbits’ advantages will make up for each 
other’s shortcomings and provide ubiquitous 
coverage services.

2. Air domain: In the air segment, high and 
low altitude platforms (HAPs and LAPs) are 
usually used to complement the ground net-
work. At an altitude of 0.3–30 km, HAPs and 
LAPs mainly consist of several aircraft, such 
as unmanned aerial vehicles (UAVs), heli-
copters, and balloons. The fl ying aircraft can 
provide edge caching and task offloading 
services for ground or ocean users. In this 
work, the UAVs are employed as the cloud 
parameter servers. Compared to ground 
nodes, air infrastructures have broad cover-
age, low cost, and fl exible movement.

FIGURE 1. The ubiquitous IoT system architecture in the 6G era.
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3. Ground domain: For the ground network, 
the cellular network is now evolving to 6G 
networks to support heterogeneous IoT ser-
vices, including indoor positioning, vehicular 
communications, and health monitoring. The 
services provided by IoT devices would gen-
erate traffic to computing and scheduling. 
The ground network can provide high-speed 
data transmission. However, the coverage of 
ground infrastructures in remote and rural 
areas is inadequate, and IoT devices usually 
have limited energy and computing capa-
bilities.

4. Ocean domain: The ocean communication 
networks would be integrated into the ubiq-
uitous IoT system in the future. Ships near 
the coastline can directly access the ground 
networks. For ships that go farther from the 
coast, aircraft and satellites can provide glob-
al Internet access. Nevertheless, accessing 
from space and air usually has high latency 
and limited data rate. Moreover, UAV-assist-
ed buoy relay is also used in water quality 
monitoring and marine creature protection.
In conclusion, the ubiquitous IoT system is 

a complex integrated network that coordinates 
among space, air, ground, and ocean segments. It 
has the largest-ever coverage scale, and helps to 
manage and coordinate heterogeneous IoT devic-
es. Managing a system at this scale requires the 
assistance of AI techniques. AI-based approaches 
can precisely extract and learn high-level traffic 
features such as burst traffi  c in hotspot areas and 
hybrid traffic in cross-domain areas. Meanwhile, 
AI takes much less time than humans to make 
decisions.

motIVAtIons And cHAllenGes
From a service perspective, traffic scheduling in 
heterogeneous IoT networks should be imple-
mented in different domains in a data-sharing 
manner. Unfortunately, user datasets are not 
always available because sharing user data poses 
technical challenges related to privacy protection 
and legal issues. 

FL addresses this challenge by training a shared 
global model with several decentralized partic-
ipants. In an FL setting, the private source data 
does not need to be retrieved from the database, 
and the training process is realized only by updat-
ing the model parameters and gradients. Specif-

ically, local models send the gradient to cloud 
parameter servers. After aggregation, the learning 
task is performed, an the updated model param-
eters and gradients are sent back to local models 
with service requests. 

Moreover, to gain knowledge from the well-
trained model, federated transfer learning is pro-
posed to improve learners’ performance on target 
domains. Through the FL paradigm and knowl-
edge transfer, federated transfer learning can 
build personalized models by collating data from 
diff erent participants without leaking privacy data.

Up to now, lots of eff orts have been made to 
use federated transfer learning to learn cross-do-
main knowledge. However, in a heterogeneous 
IoT system, the difference between domains 
might be enormous. In this case, the data are col-
lected from completely diff erent domains (e.g., air 
to ground) with various sensors (e.g., UAV-based 
or vehicle-based). It is hard to adopt the transfer 
learning approach directly. Therefore, in this arti-
cle, a knowledge-sharing module is designed to 
imitate the knowledge shared by models from 
other domains. 

KnoWledGe-sHArInG FrAmeWorK
This section introduces the details of the pro-
posed knowledge-sharing framework, including 
a federated imitation learning architecture and a 
knowledge-sharing module. 

FederAted ImItAtIon leArnInG ArcHItecture
The framework of federated imitation learning is 
performed in ubiquitous IoT networks. There are 
local participants, cloud parameter servers, and 
local datasets. Local participants need to learn 
knowledge from local datasets, and the cloud 
parameter servers share well-trained knowledge 
collected from other domains. Inspired by the 
Fuzzy theory [13], the knowledge-sharing module 
can transfer parameters to cloud parameter serv-
ers, which contain necessary heterogeneous local 
traffi  c features. The details of the knowledge-shar-
ing module are illustrated in the next subsection.

Different from transfer learning, the knowl-
edge-sharing module can fuse heterogeneous 
knowledge in several diff erent domains, imitating 
the uncertainty concept judgment and reason-
ing thinking mode of the human brain. Weights 
of knowledge-sharing modules are computed 
using fuzzy logic dealing with various parameters. 
It senses the load and data concentration, and 
adjusts the proportion of diff erent model parame-
ters accordingly.

In addition to using local datasets for training, 
it can also perform knowledge-sharing to obtain 
well-trained parameters from cloud parameter 
servers with service requests. As illustrated in Fig. 
3, the overall framework of federated imitation 
learning is explained.

In the proposed framework, the main goal is to 
predict traffi  c in target areas and learn to model 
high-level heterogeneous traffic features, and 
capture commonalities from the local time-series 
datasets. Thus, we adopt variational long short-
term memory (LSTM) as our baseline model, 
which has forward and backward hidden layers 
to learn the temporally contextual information 
and can be trained by a backpropagation through 
time (BPTT) algorithm. Federated imitation learn-

FIGURE 2. An example scenario of a federated learning framework for a 6G 
ubiquitous IoT system. �: Users send their request to nodes in air or space 
domain; �: cloud delivers the global model to the selected air or space 
nodes; �: air or space nodes iteratively train the global model with a local 
dataset and send back a local model for aggregation. Repeat ��; then the 
trained model is delivered to users.
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ing can be performed either online or offline. 
Note that knowledge-sharing and model training 
are simultaneous, while federated imitation learn-
ing is performed online.

KnoWledGe-sHArInG module
To fuse heterogeneous knowledge in different 
domains, a knowledge-sharing module is incorpo-
rated into the framework. Inspired by the Fuzzy 
theory, the knowledge-sharing module off ers the 
local model the ability to build cognitive con-
nections among different domains. Specifically, 
it can form the probability distributions of diff er-
ent features and map them to high or low scores. 
Referring to the probability distributions, the 
knowledge-sharing module can reduce the uncer-
tainties. Moreover, to capture the commonalities 
of cross-domain features, the knowledge-sharing 
module modifi es the local features’ probabilities 
referring to the global sharing parameters.

In the local model, we use front layers as fea-
ture extractors to learn the local datasets. The 
knowledge-sharing module is a feed-forward 
layer behind the front layers. Thus, the knowl-
edge-sharing module states can be calculated 
depending on the current output state of the 
front layer and the global sharing parameters 
from cloud parameter servers. This structure 
enables IoT devices to learn a global shared 
model while keeping the local datasets inside 
the devices. Furthermore, it is not necessary to 
upload raw datasets to the cloud servers. Only 
the model parameters and gradients are shared 
in the cloud parameter servers.

Note that the global sharing parameters in the 
cloud are only used as a guide for local models. 
The global sharing parameters in cloud servers are 
updated with a cautious strategy, which means it 
will not make serious mistakes. Still, these param-
eters might not be optimal for each local model. 
Therefore, every local model must train its knowl-
edge-sharing module based on the global sharing 
parameters received from the cloud.

Overall, the knowledge-sharing module can 
speed up the local training and increase the 
cross-domain traffic prediction accuracy. In the 
learning of local models, the local parameters and 
global sharing parameters are trained. In some 
cases, it can adjust the proportion of local param-
eters and global sharing parameters in the pro-
cess of backpropagation. For instance, the local 
feature extraction might be frozen, and only the 
knowledge-sharing module is trained. 

mAtcHInG-tHeory-bAsed 
decentrAlIZed scHedulInG ApproAcH

In this section, a decentralized traffi  c scheduling 
approach is proposed for ubiquitous IoT systems 
in which the preference list and distributed match-
ing algorithm are presented. 

preFerence lIst
In 6G ubiquitous IoT systems, tasks prefer to be 
assigned to the devices that best minimize the 
processing cost and enjoy the available resourc-
es considering IoT devices’ limited energy and 
computing capability. With that objective, the 
preference list of each device is proposed as a 
reference for node selection. 

After receiving the traffic prediction results 
from the federated imitation learning framework, 
the algorithm fi rst visits the devices on which the 
predicted traffi  c can be scheduled. The selection 
of destination devices is based on three factors: 
the prediction errors, the remaining resources, 
and the transmission delay. The prediction error 
quantifi es the deviations of the actual traffi  c arrival 
time from the predicted results. The resources in 
IoT networks include application resources (i.e., 
CPU and memory) and transport resources (i.e., 
bandwidths and hop of each candidate path). The 
transmission delay is used to fi nd devices as close 
as possible to provide on-demand services.

Then the algorithm compares the three factors 
of these alternative devices. If the device on top 
of the list has enough resources to serve the task, 
it is recorded on the list. Otherwise, this device 
is removed from the list, and the next device is 
visited. 

dIstrIbuted mAtcHInG AlGorItHm
The distributed matching algorithm adopts 
matching theory, a mathematical framework in 
economics, to make intelligent scheduling deci-
sions. The traffi  c scheduling problem is formulat-
ed as a one-to-many device matching problem. 
Our solution aims to find an optimal matching 
pair between devices to carry the predicted tasks 
and maximize resource allocation effi  ciency on 
IoT systems.  

During resource allocation, each device is per-
mitted to collect the devices they are interested 
in according to the preference list. The devices 
do not need to know the preferences of other 
devices. Instead, the devices only make decisions 
based on the local data they have collected. Thus, 
a matching -theory-based approach can be imple-
mented in a distributed manner without a central-
ized controller. This approach’s eff ectiveness and 
correctness have been proved by some recent 
research [14, 15].

For the matching algorithm, the detailed steps 
are listed as follows:

FIGURE 3. Schematic of the federated imitation learning framework.
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Step 1: The algorithm loops through the prefer-
ence list and then selects the most preferred 
destination devices.

Step 2: Then the algorithm contacts the device 
by sending it a message and waits for the 
response.

Step 3: If the device’s answer is No, place the 
device at the end of the preference list, 
and the algorithm moves to check the next 
device on the list. 

Step 4: Otherwise, if the device accepts to host 
the tasks, the loop breaks, and the matching 
between the source and destination devices 
is successful.
Note that the whole algorithm is repeated 

after a certain period before the update of the 
preference lists.

A Case Study
This section presents a case study to illustrate 
the benefits of the proposed federated imitation 
learning framework and matching-theory-based 
scheduling approach.

Experimental Setup
Considering the ubiquitous IoT network’s largest 
ever geographical scale, in this article, a simplified 
network structure is constructed as the consid-
ered topology. This topology consists of 2 GEOs, 
8 MEOs, 32 LEOs, 600 UAVs, 10,000 ground 
nodes, and 2000 ocean nodes. The routing design 
of each domain follows different policies. The air 
and ground links have the largest bandwidth and 
lower delay, while space and ocean links have 
higher delay but lower bandwidth. Traffic is trans-
ported from one source device to one or many 
destination devices independent and identical-
ly distributed (i.i.d.). They employ the UAVs as 
the cloud parameter servers, while the ground 
and ocean nodes are the devices with local data-
sets. The values of the main parameters in the 
considered topology are given in Table 1. This 
article simulates the experiments in Tensorflow 
(Python 2.7/3.5). A multi-core workstation with 

16 2.10 GHz Intel Xeon® CPU E5-2620 v4 cores, 
2 NVIDIA TITAN XP GPU cores, and 64 GB RAM 
is deployed to accelerate the learning process. 

For the local datasets, the packet header infor-
mation was collected every 5 min from three uni-
versity data centers deployed in Beijing in January 
2021. All the datasets were temporally coded, 
randomly sampled, and divided into training, val-
idation, and test datasets at a ratio of 6:3:1. The 
local dataset is a collection of input-output pairs. 
The input is a column input vector including time-
stamp, arrival time, processing time, source and 
destination ports, and IP addresses of source and 
destination. The output is the traffic arrivial time. 
As for the federated imitation learning structure, 
we set the mini-batch size to 120 and the initial 
learning rate to 0.005. LSTM consists of 5 input 
layer units, 6 hidden layers, and 1024 hidden 
units in each local model. The proposed knowl-
edge-sharing module contains a feed-forward layer 
with 512 hidden units. The prediction accuracy 
was calculated by the root mean square error 
(RMSE), and the prediction window size is 12.

Result Analysis
As depicted in Fig. 4, the performance of the 
proposed federated imitation learning model 
with that of federated transfer learning, LSTM, 
and support vector machine (SVM) was com-
pared with an identical simulation configuration. 
Among these comparison algorithms, federated 
imitation learning and federated transfer learn-
ing are federated models. Besides that, LSTM and 
SVM are popular traffic prediction models. In all 
experiments, we adopted the same datasets. The 
prediction task was 5 min ahead of traffic predic-
tion. From the results, the prediction accuracy of 
federated imitation learning is higher than those 
of federated transfer learning and SVM but very 
close to that of LSTM. This is because the core 
technique of federated imitation learning to pre-
diction is the LSTM structure. Furthermore, FL can 
protect data privacy by keeping the training data-
set locally. That the federated imitation learning 
model performs better than federated transfer 
learning is within our expectations because the 
transfer learning technology cannot perform well 
in a large-scale heterogeneous environment.

FIGURE 4. Comparison between the prediction accuracy of the proposed feder-
ated imitation learning and that of the federated transfer learning, LSTM, 
and SVM.
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TABLE 1. Simulation setup.

Parameters Values

Data arrival rate (Mb/s) Random in [2, 10]

Simulation time (min) 120

Simulation area (km2) 10  10

UAV coverage 100 nodes or 1 km2

UAV propulsion power (W) 100

Computation capacity (GHz) Uniform in [1.8, 2.4]

CPU cycles 8

Satellite users Random in [100, 500]

Carrier frequency (GHz) 2.4

Bandwidth of channel (kHz) 128 15 kHz

Single-hop delay (ms) Uniform in [10, 80]
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Figures 5a and 5b compare the path-block-
ing probability and resource occupation rate, 
respectively, with the traffic load for decentral-
ized, centralized, first-fit, and random scheduling 
algorithms. The centralized algorithm is the same 
as the decentralized algorithm but needs a cen-
tralized controller. The path-blocking probability 
values for the decentralized algorithm and the 
centralized algorithm were smaller than the first-fit 
and random algorithms when the traffic load is 
low. The path-blocking probability values of the 
first-fit and random algorithms were unacceptable 
when traffic was dense. It also illustrates that our 
distributed algorithm outperforms the first-fit and 
random algorithms in resource occupation rate. 
The distributed algorithm also performs slightly 
better than the centralized algorithm when the 
traffic load becomes large. Because the distribut-
ed algorithm does not need a controller to deter-
mine the resource allocation, the decision process 
is quick. To this end, we can conclude that our 
solution achieves satisfying performance in large-
scale heterogeneous IoT networks. 

Future Directions
Based on the proposed framework, possible 
research directions can be conducted in the fol-
lowing aspects.

Learning Algorithm Design: The 6G IoT system 
is a ubiquitous network. There are so many devices 
with different functions that thus generate enor-
mous heterogeneous traffic types. This makes it 
hard for an engineer to choose a suitable learning 
model. Moreover, the neural network architecture 
is deeply concerned with the targeted issues, which 
are usually not scalable. Furthermore, considering 
the multi-dimensional input data, the problem of 
how to design an effective and scalable learning 
architecture remains unsolved.

Framework Deployment: When we try to 
deploy the ubiquitous IoT system, the transmis-
sion delay is a serious problem. For instance, the 
ultra-large network scale makes it tough to access 
remote nodes (e.g., GEO or cross-ocean devic-
es). Moreover, the computation cost required 
for each parameter update exceeds IoT devices’ 
capacity because the distributed approach often 
means increased communication cost. 

Multi-Dimensional Resources Integration: 
The wide-area network coverage of IoT and mas-
sive device connections enriches the total amount 
of network resources. It adds new resource forms, 
forming a network where wireless, spectrum, pro-
cessing, storage, and other multi-level heteroge-
neous resources coexist. Resources at different 
levels in the network have different forms, and 
even the deployment of some resources is isolat-
ed from each other. Most of the existing resource 
scheduling strategies are designed in the same 
dimension and cannot be applied to new sce-
narios with multiple layers of complex resources. 
Therefore, achieving flexible resource schedul-
ing and coordination among multi-layer resource 
scenarios has become a challenge faced by the 
current industrial Internet.

Network Centralized Control: Different com-
munication protocols such as industrial communi-
cation protocols, general protocols, and wireless 
protocols have different regulatory processing 
requirements. Existing networks can only imple-
ment service control for a single access protocol, 
resulting in the isolation of diverse control func-
tions in the same scenario, making it challenging 
to achieve efficient control integration. In the net-
work, the function configuration is rigid, and the 
operation is complicated. It is challenging to com-
plete open and unified control and function inte-
gration of multiple systems. Therefore, achieving 
effective control integration for heterogeneous 
systems has become an urgent challenge in IoT.

Conclusion
This work has proposed a cross-domain knowl-
edge-sharing framework for efficient traffic sched-
uling in 6G ubiquitous IoT networks. The main 
components of our solution are:
1. The federated imitation learning model with 

a novel knowledge-sharing module to fuse 
the heterogeneous traffic features

2. The matching theory-based scheduling algo-
rithm that helps schedule traffic to the appro-
priate devices with an IoT device preference 
list

By integrated the federated learning model into 
a distributed algorithm, the cross-domain knowl-
edge-sharing framework can effectively allocate 

FIGURE 5. a), b): Path-blocking probability and resource occupation rates of decentralized, centralized, first-fit, and random traffic sched-
uling algorithms.

1200 1800 2100 2400
Traffic Load (erlang)

R
es

ou
rc

e 
O

cc
up

at
io

n 
R

at
e 

(%
) 100

90

50

80

70

60

40

30

20

10

0
1500

0.20

0.18

0.10

0.16

0.14

0.12

0.08

0.06

0.04

0.02

0.00
1200 1500 1800 2100 2400

Traffic Load (erlang)

ytilibaborP gnikcol
B htaP

Decentralized
Centralized

Random
First-Fit

Decentralized
Centralized

Random
First-Fit

 

YANG_LAYOUT.indd   141YANG_LAYOUT.indd   141 10/22/21   12:00 PM10/22/21   12:00 PMAuthorized licensed use limited to: Bibliothèque ÉTS. Downloaded on May 01,2022 at 09:04:15 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Network • September/October 2021142

the heterogeneous IoT resources without com-
promising user privacy.
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