
Learning Framework for IoT Services Chain
Implementation in Edge Cloud Platform

Chuan Pham∗, Duong Tuan Nguyen∗, Nguyen H. Tran†, Kim Khoa Nguyen∗, Mohamed Cheriet∗,
∗Synchromedia - École de Technologie Supérieure, Université du Québec, H3C1K3, Canada,

† School of Computer Science, The University of Sydney, NSW, Australia.

Abstract—As an emerging solution to latency requirements
of Internet of Things (IoT) services, edge computing can bring
powerful processing capacity closer to data sources. However,
with the limited resources at edge nodes, a major challenge
is finding optimal resources in distributed edges to reduce the
operational costs of service deployment. Prior works focus mainly
on static optimization which may not work efficiently with
the time-varying workloads and resource constraints. In this
paper, we, therefore, consider a dynamic allocation framework
in the edge-cloud network over the long run with uncertainty
workloads. In such a system, we introduce a JOint Routing
and Placement problem for IoT services, called JORP, that
dynamically assigns resources according to workload demand in
order to reduce the operational costs in long term. Inspired from
the well-known algorithm, branch-and-bound (BnB), for solving
the mixed-integer non linear problems (MINLPs) like JORP, we
bring the learning concept to address the high complexity of BnB
when the search space is huge. Particularly, we design a deep
neural network (DNN) and train it under the imitation learning
to mimic branching behaviors in BnB for searching the optimal
solution. Finally, simulations show our solution outperforms
baselines in terms of convergence and operational cost.

Index Terms—Internet of Things, Edge Computing, Cloud,
Resource Allocation, Branch-and-Bound, Deep Neural Network.

I. INTRODUCTION

With many benefits from virtualization technology, network
operators start to adopt this paradigm to transform their
hardware infrastructure in both cloud and edge networks.
Especially, the edge computing with NFV-based architectures
has attracted substantial research attention as an efficient
implementation platform for deploying IoT services [1]. In the
IoT network, edge nodes [2] are referred to powerful gateways
that are used to run client services [2], [3]. Similar to cloud
infrastructure where multiple VNFs are hosted, an edge node
however takes advantage of the close distance to end nodes and
therefore significantly reduces network latency. For example,
a temperature service in a smart building places a set of
sensor devices in the edge to gather temperature information.
There are IoT gateways are responsible for receiving data from
sensors then forward to next functions for processing. Such
functions can be virtualized and deployed at edge nodes rather
than at the cloud in order to meet real-time requirements.
Virtualization technologies supporting IoT service deployment
in edge networks typically include Docker [4], OpenStack [5],
and Kubernetes [6]. Unlike the cloud, an edge node is unable
to run too many network functions at the same time due to
its limited resource capacity. In a smart city network with

����� �����

�	
��
�	�

��������	�
�	�

�	�������������

���
����

�	���

�	���

�	�
�

�	���

�	���

�	�
�����

���!�����

"#$����%

�	�

���

�������

Fig. 1: An example of the VNF routing and placement problem
for an IoT service chain.

hundreds of IoT services, a network operator, therefore, needs
to carefully utilize limited edge resources and leverage the
presence of cloud nodes in an efficient way to reduce the
operational costs when deploying IoT services.

In this study, we consider an important use-case of IoT
service implementation: dynamically placing IoT services in
a smart city where the edge-cloud based architecture [7]
is accounted to support this model. In details, to run an
IoT service, many VNFs are chained in a specific order
(called service chain [8]) and placed in different locations to
handle some tasks (e.g., processing temperature data, encoding
video streaming). Despite several intensive investigations in
literature, such as [8]–[10], resource allocation for deploying
IoT service chains is still facing many challenging issues
as follows. First, the VNF placement problem [8] is often
formulated for cloud-based network and a few works consider
the system model that fits to IoT networks. In particular, VNFs
in the general VNF placement problem [11] can be placed in
any available nodes of the substrate network but it does not fit
in case of IoT networks. For instance, since some source and
destination nodes of an IoT service are related to locations of
IoT devices, they are constrained to be placed in some specific
nodes. Second, because this problem is NP-hard, an efficient
solution is still needed. Lastly, the VNF placement in IoT
networks should be aware of time-varying traffic of the service
chain. For instance, the amount of sensing information in a
smart building during peak hours increases since many offices
and activities are activated; meanwhile in the midnight, most
of services only run as background services. This situation
makes several instances of VNFs perform with very low
utilization. Therefore, designing a dynamic allocation and

978-1-7281-5089-5/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on August 10,2020 at 20:59:16 UTC from IEEE Xplore. Restrictions apply.

scaling approach to deploy IoT services in long term is the
main objective in our work.

The main contributions of this work are summarized as
follows. First, we leverage the flexible capability of NFV in
the edge-cloud based architecture to design a dynamic VNF
scaling solution for IoT service implementation. Specifically,
we take into account resource allocation in the system to
optimize the system cost over the long run of the system in
which requirements of IoT service constraints, such as the
number of VNF instances and the Service Level Agreements
(SLA) to implement IoT services are involved. We then for-
mulate the optimization named as JOint dynamic Routing and
Placement (JORP) problem for IoT service implementation
with the time-varying workload demands. Another challenge
is the NP-hardness form of JORP, which is too difficult to find
an optimal solution of JORP in polynomial time. In this work,
we advocate the branch-and-bound (BnB) solution, a well-
known algorithm for solving mixed-integer non linear problem
(MINLP) [12], to look for a near-optimal solution of JORP.
We also acknowledge the fact that BnB converges very slow
due to a large search space and may not fit reality well. This
drawback is mitigated by adopting a learning method, named
as L-JORP, in which a DNN is designed to learn pruning rules
as BnB to search the optimal solution. Furthermore, to “steer”
the search into potential branches, we train the model based
on the imitation theory, DAgger [13].

II. PROBLEM FORMULATION AND SOLUTION
FRAMEWORK

A. System model
In this paper, we consider an enterprise IoT service de-

ployment system, in which a set N of VNFs is deployed
to implement an IoT service chain. The service chain is
comprised of VNFs chained in a specific order, each VNF
may requires multiple instances to fulfill workload demands.
To execute the service chain, VNFs are deployed on a set of
physical nodes including edge and cloud nodes. A toy example
of an IoT service chain is depicted in Fig. 1 where there are
two VNFs in this chain that are placed in the substrate network
corresponding to three VNF instances. VNF 1 is placed with
only one instance in node 1, and VNF 2 requires two instances
placed in different nodes (i.e., node 2 and node 3). The traffic
from the source node 0 is steered into two paths to reach
the destination, node 4. For ease of notations, we use n to
index for the nth VNF in the chain; especially, the source and
destination VNFs are indexed by 0 and N , respectively. The
0th VNF is the head of the service chain where the traffic flows
are aggregated and passed through the chain. In IoT networks,
source nodes are often IoT gateways that are responsible for
collecting data from all the sensors. Meanwhile, the destination
nodes are played as dispatchers to connect actuators for some
specific tasks, such as opening/closing doors, switching lights.
Therefore, these functions are fixed in the implementation and
they cannot be placed arbitrarily into any physical nodes as
many prior works [14]. Given a pair of source and destination
nodes, we aim to place VNF instances into nodes and decide a
routing allocation in order to utilize resources efficiently while
satisfying all the service requirements over long run.

We model our infrastructure as a network graph (V, E), in
which V represents the set of nodes and E is the set of links
between them. In particular, two types of nodes are identified
as follows: i) server nodes Vs ⊂ V that are used to place
VNFs; ii) router or gateway nodes that are used for traffic
forwarding and routing. We denote the amount of available
computing resources of node v ∈ V by pv . Practically, there
are multiple resource types on each server, such CPU, memory,
storage, network bandwidth, etc; however, we only consider
one resource type to simplify the formulation that is readily
extensible in the general case. Furthermore, we consider that
the system works in a spanning time slots 1, 2, ..., T . At
timeslot t, given the fact that the system can receive several
requests, we suppose all of requests are organized to a queue
and executed according to First-Come, First-Served (FCFS).
B. Problem formulation

To formulate the joint dynamic VNF placement and routing
problem, we define following allocation variables: i) xnv(t),
an integer variable, to indicate the number of instances of nth

VNF placed on node v at time t; ii) rnuv(t), an real variable,
to indicate the traffic rate allocation of link nth of the service
chain over the physical link (uv).

1) Service chain constraint: Since a physical node can
place multiple instances of a VNF, a placement solution cannot
provide resource over the capacity of a node. Hence the
constraint is formulated as follows:∑

n∈N xnv(t)pn ≤ κvpv, ∀v ∈ V , (1)

where κv is the decay factor of each node v and pn is the
required resources of an instance of the nth VNF.

Each VNF in the service chain has to be placed at least one
instance to execute a specific task as follows:

φn(t) =
∑

v∈V xnv(t) ≥ 1, ∀n ∈ N . (2)

We also need to ensure that all the requests will be served
through every VNF according a specific order of the service
chain as follows∑

v∈V r0uv(t) ≥ λ(t), t = 1, ..., T, (3)

where
∑

v∈V r0uv(t) represents the aggregation traffic for-
warded to instances of the 1st VNF that is placed in node
v and λ(t) is the given traffic loads that need to be served.

Second, the traffic rate of a service chain departs at the 0th

VNF. This rate is changed after being processed by a specific
VNF. Hence we denote αn as a change ratio after processing
at the nth VNF. To conserve all of traffic going through VNFs
to avoid the packet loss, we represent an incoming-outgoing
traffic at VNF n as follows

αn

∑
u∈Vs

rn−1
uv (t) =

∑
v′∈Vs

rnuv′(t). (4)

where (4) presents the total outgoing traffic at VNF n that
must equal the value of the multiplication between the total
incoming traffic and the change rate.

2) Latency constraint: If the nth VNF is deployed with
many instances, the traffic will be steered equally among
instances. Given the input workload λ(t) of the service chain

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on August 10,2020 at 20:59:16 UTC from IEEE Xplore. Restrictions apply.

at time t, the arrival workload at the nth VNF can be calculated
by the product of the initial rate and all the change rates of
its previous VNFs in the service chain, that is

λn(t) = λ(t)

n−1∏
m=1

αm, t = 1, 2, ..., T. (5)

A node has a processing rate μv that is shared between
instances of VNFs. The more instances that are placed in
a node the higher processing delay the node includes. Ac-
counting the latency at the nth VNF, we define Lpr

n (t) as the
processing delay, which is the maximum latency of a node
to place its instance since these instances are processed in
parallel. Following the M/GI/1 queueing mode, we have

Lpr
n (t) = max

{
1

μv −
∑

n∈N
xnvλn(t)

φn

}
v∈V

, ∀n ∈ N , (6)

where
∑

n∈N
xnvλn(t)

φn
is the aggregation traffic of all the

instances placed in node n. Similarly, the transmission delay
will increase as many virtual links (i.e., connections between
instances) are embedded on the physical link (uv). Given
the bandwidth Luv of link (uv), the transmission delay is
calculated as follows:

Ltr
uv(t) =

1

Luv −
∑

n∈N rnuv(t)
, ∀u, v ∈ V , (7)

where
∑

n∈N
rnuv(t) is the aggregated routing rate on link (uv).

Hence a placement scheme should guarantee a propagation
latency constraint from the source to the destination of the
service chain as follows:

L(t) =
∑
n∈N

Lpr
n (t) +

∑
u,v∈V

Ltr
uv(t) ≤ L̄, (8)

where L̄ is the given latency threshold of the service.

3) Objective function: In this work, we aim to find a dy-
namic solution that can place VNFs in the substrate network to
minimize the total cost of provisioning resources. Concretely,
an optimal solution should minimize the number of instances
that can satisfy all requirements of the service chain. Further-
more, it is necessary to optimize the number of instances that
is changed in each node during the considered period since
placing tasks always consume significant operational cost in
terms of resources, configuration and failure [15]. Hence, to
minimize the implementation cost, we formulate the objective
function as follows:

C(t) =
∑

n∈N ,v∈V
(βnxnv(t) + γn[xnv(t)− xnv(t− 1)]+)

The first term of C(t) presents the cost of placement instances
of the n VNF with the instance cost βn. The second term is to
calculate the cost of change (i.e., adding/removing some new
instances) at node v with the monetary parameter γn.

4) Joint dynamic routing and placement problem for IoT
service chain: With constraints and objective functions above,
we formulate the optimization problem called Joint dynamic

placement and routing problem for IoT service chain (JORP).

min
x,r

T∑
t=1

∑
n∈N ,v∈V

(βnxnv(t) + γn[xnv(t)− xnv(t− 1)]+)

s.t. (1), (2), (3), (4), (5), (8),

(xnv(t)− 1)
∑

v∈V rnvv′(t) ≥ 0, (9)

xnv(t) ∈ N, t = 1, ..., T, ∀n ∈ N , v ∈ V , (10)
rnuv(t) ≥ 0, t = 1, ..., T, ∀n ∈ N , v ∈ V . (11)

We add another constraint to relate two decision variables in
our model by (9). It is to ensure that if the nth VNF is not
located in node u, then there is no traffic rate allocated (i.e.,
if xnv = 0 then

∑
v∈V rnuv = 0).

5) Discussion: JORP is the MINLP, which is NP-hard in
general. The integer allocation variables and the continuous
routing rate variables make the problem more challenges to
find an optimal solution. In this work, to simplify JORP, we
relax it by taking to account the solution of current timeslot
t with given the placement scheme of the previous timeslot
t − 1. It means that by observing the current demands and
previous placement result, we make the allocation decision at
timeslot t to minimize the system cost. Hence, the relaxed
problem JORP is rewritten as follows:

JORP′ : min
x,r

∑
n∈N ,v∈V(βnxnv + γn[xnv − x′

nv]
+)

s.t. (1), (2), (3), (4), (5), (8),

xnv ∈ N, ∀n ∈ N , v ∈ V , (12)
rnuv ≥ 0, ∀n ∈ N , v ∈ V (13)

where x′ = {x′
nv}n∈N ,v∈V is the given allocation in previous

timeslot and time index are removed from the constraints (1),
(2), (3), (4) and (8).

Among many optimization approaches to find the answer
for an MINLP problem, the BnB algorithm is one of the well-
known algorithms in the state of the art. We next present how
BnB can find the optimal solution of JORP and discuss the
disadvantage of this method in the context of IoT networks.

C. BnB-based approach for VNF placement problem

We summarize JORP’ by

min f(x, r) (14)
subject to Z(x, r) ≤ 0,

where every elements of x = {xj}j=1,2,...,|N |×|V| is integer,
elements of r are real, and Z(.) are constraints. Note that, we
transform variables from multiple dimension variables into one
dimension for ease of perform BnB.

Using BnB method to solve JORP’, we find the integer
variable under the iterative search-tree method [12]. Intuitively,
the root problem in the tree is constructed by relaxing the
integer value of JORP’. Then, we iteratively find the integer
value of each element of this variable by branching the
problem depending on the real value found in the parent node.
The child node is created by adding a new constraint to branch
the range of the selected element. In this way, the solution of
each node m is the upper bound of JORP’.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on August 10,2020 at 20:59:16 UTC from IEEE Xplore. Restrictions apply.

Mathematically, we present BnB as follows. Let denote m
as the pruning node at the kth iteration and Pm as the relaxed
problem of node m. In Pm, all the integer constraints are
relaxed; for example, Cm = {(x, r) : xj ∈ N, j = 1, 2, ..., J}
with J = |N | × |V|, can be relaxed into Rm = {(x, r) :
xj ∈ R, j = 1, 2, ..., J}. Hence, the original problem can be
relaxed as min{f(x, r) : (x, r ∈ Rm)}. From the root node
m = 0 corresponding to the relaxed problem from the original
one (14), at each iteration, the relaxed problem is solved to
obtain the optimal value f∗ and the optimal solution x∗ and
r∗. Since all the integer variables are relaxed, (14) is more
tractable. The pruning policy πm is then applied to divide
into two following branches. The left child node includes the
problem of the parent node and the new constraint as follows:

Rl
m = Rm ∩ {x, r : xj ≤ x∗

j}. (15)

Thus, the left child problem is formed as follows

P l
m : min

x,r
{f(x, r) : (x, r) ∈ Rl

m}. (16)

Similarly, the right child node is added by including the parent
problem and the new constraint as follows:

Rr
m = Rm ∩ {x, r : xj ≥ x∗

j}, (17)

P r
m : min

x,r
{f(x, r) : (x, r) ∈ Rr

m}. (18)

These steps are repeated until every element of x is integer.
A node is pruned if its optimal solution f∗

m is less than
fmin (bounding condition), or Pm is infeasible (infeasible
condition), or finally, all the elements of x are integer (integral
condition).

In order to reduce the complexity of BnB, in the next part,
we present a learning model based on DNN and the imitation
theory that can imitate the procedure of BnB to efficiently find
the near-optimal solution of JORP.

III. L-JORP: LEARNING FOR VNF PLACEMENT IN IOT
SERVICE CHAIN IMPLEMENTATION

Consider the search tree of BnB, the final solution belongs
to a specific branch in the tree. Thus, if we can recognize such
a good branch and prune all others, the search space can be
reduced significantly. We design the architecture of DNN that
can represent specific characteristic of JORP in order to learn
pruning rules for searching the optimal solution based on BnB
algorithm. Furthermore, to “steer” the searching into potential
branches, we apply the imitation theory, DAgger [13] in the
training phase.

A. DNN: A supervisor learning model for classification

In this model, we design the input as a feature vector of the
nodes and the output as a binary value {0,1} corresponding to
prune and preserve. We employ a K−layer Perceptron neural
network [16]. At the first step, we encode the optimization
problem by representing the features of binary variables and
constraints and the objective value as shown in Fig. 2. The
relationship between the binary variables and the constraints is
implied by the link ei,j , i.e., if the v[i] belongs to the constraint
cj , then ei,j = 1, otherwise ei,j = 0. The value of each node
in the constraint layer is activated (i.e., it equals to 1) if the
input values satisfy the constraint, otherwise it is deactivated.

Fig. 2: Deep neural network for learning to branch.

The features of the input layer will propagate to the next
layer by the Rectified Linear Unit function ReLU(.), (e.g., we
use the function max(0, .)). Thus, the output of the kth layer is
as follows gk = ReLU(wkgk−1 + bk), where wk and bk are
the learning and bias parameters of the kth layer, respectively.

Finally, the output is calculated as the probability which is
normalized as follows:

O[i] =
exp(gKi)∑

j=0,1 exp(g
K
i)

, i = 0, 1. (19)

We design the output layer with two nodes to classify input
nodes that belongs to prune class or preserve class.

Furthermore, we use the weighted cross entropy loss func-
tion as follows L = −∑

i=1,2 wiyi log(Oi), where y is the
label vector to measure the loss compared to the output O.

B. Training phase
The proposed neural network can learn policies in the

optimization search tree via a supervised training phase. How-
ever, how to train the neural network even for the medium
setting of VNF placement problem in IoT networks should
be carefully considered because of the huge number of nodes
in the optimization search tree. For the supervised learning
process, a pair of input and output values is used to train in
each iteration. It means that each optimization of each node
has to be solved to apply the pruning rules.

We inspire from the collecting data, DAgger algorithm [17],
to propose an algorithm to collect data automatically by using
an optimization solver for training. We run the training phase
with the maximum U iterations. At the beginning, the policy
π0 is added to Π by setting the pruning policy if the root node
is infeasible and the preserve policy if it has a solution. For
each trajectory node in the tree, we let the system prune the
node according to learning policy Π (Lines 7-9). Then, the best
policy of pruning π∗(m) is given to “steer” the direction of
branching, but the system is ignoring them and simply add this
expert result to the data set for training (Lines 10-12). From
now, we will train a new policy to make the system remember
the correctness π∗(m) (Line 13). The branching step (Lines
14-22) is similar to the BnB method in adding children nodes
into the stack for the next iteration. Depending on the problem,
U might be adjusted during the training of the neural network
until it approaches to the good performance.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on August 10,2020 at 20:59:16 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Imitation learning based algorithm for
solving JORP.

1 Initialization:
S := {}, f∗ := ∞,Π := {π0}, u = 0,m = 0,D ← ∅;

2 while u ≤ U do
3 u:=u+1;
4 Set the relaxed problem JORP to node m;
5 S.push(m);
6 while (m ← S.pop())!= Null do
7 Solve the relaxed problem of m to obtain

(x∗
m, r∗m) and f∗

m;
8 Classify node m by DNN with the trained

policy Π: Φ(m);
9 Get dataset Du = {(m,π∗(m))} of visited

nodes by a decision π∗
u given by an expert;

10 Add a new policy to Π = Π ∪ π∗(m);
11 Aggregate datasets D ← D ∪Du;
12 Train classifier on D;
13 if Φ(m) is preserve then
14 if f∗ > f∗

m then
15 Branching to ml and mr corresponding

to real element xj ;
16 S.push(ml,mr);
17 end
18 end
19 if {x∗

j ∈ N|∀j} then
20 f∗ := min(f∗, f∗

i);
21 end
22 else if u=U then
23 #Increase threshold if xj /∈ N

24 U++;
25 end
26 end
27 end

C. Testing phase

In the testing phase, we use the pruning policies learned
from the training phase to scan the optimization search tree
instead of using the regular policy of the BnB algorithm. If
the selected is the leaf node, a convex solver is invoked to
solve since the sub-problem now becomes convex with given
relaxed variables. Thus, with the set Π of learning policies, the
neural network tries to find the optimal solution with minimum
number of nodes expanded and reducing the computation. To
do that, an optimal node is kept to compare with the solution
in each iteration.

The execution of this algorithm is similar to BnB; however,
instead of using the pruning rules, we branch and prune nodes
by the neural network, which is denoted by Φ(m).

IV. NUMERICAL RESULTS

A. Settings

1) Optimization settings: We consider a general implemen-
tation with a hierarchical smart city architecture including 3
cloud nodes and 20 distributed edge nodes. Moreover, to verify
the performance of the proposed algorithm, a varying setting

(a) Learning rate evaluation. (b) Optimal value trajectory.

(c) Optimalilty gap comparison.

Fig. 3: Convergence evaluation.

of nodes and VNFs in a service chain is also considered in our
work. For each service chain, the source and destination nodes
of the IoT service chain are given. In particular, IoT requests
from sensors will be aggregated by a gateway as a source node,
and at the end of the service chain, the dispatching function
connected to end devices is the destination node.

In order to evaluate the benefit of the edge-cloud based
model, we set the upper bound latency of the service in range
from 30 ms to 150 ms. Meanwhile, the propagation latency
between nodes is in the range between 30 to 100 ms, which
also implies the distance between them.

2) Learning settings: Our learning framework is developed
by Python with supporting from Pytorch to create the neural
network. For the neural network, we design three hidden layers
with the setting as 32x64x32. We set 6.0 × 10−3 as the
threshold of mean square error for training.

B. Results

1) Convergence: We first present the convergence result
of the neural network by varying learning rate. Mean square
error rate is used to analyze the convergence performance
of the accuracy of the neural network as shown in Fig. 3b.
At the learning rate 0.01, the neural network can reach the
convergence very fast; however, its mean error rate is the
highest compared to other settings. We observe that with the
learning rate 0.004, our designed neural network can obtain a
good convergence after 5000 iterations while the mean square
error fluctuate between 5.5×10−3 and 6.1×10−3. For further
simulation results, we fix this learning rate setting to execute
the learning framework in both training and testing phases.

We next evaluate the performance of L-JORP as shown in
Fig. 3b. We simulate the performance under the setting with
20 nodes and 30 VNF instances. The comparison is taken into
account the optimal solution solving by BnB algorithm and
L-JORP. Using BnB (considered as the optimal solution), this
algorithm needs to go through 18347 nodes to find the optimal
solution in 352.57 seconds. Meanwhile, L-JORP can reach the

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on August 10,2020 at 20:59:16 UTC from IEEE Xplore. Restrictions apply.

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122
Nodes

0

5

10

15

Cloud nodes

L-JORP Greedy Optimal

(a) Number of used instances.

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122
Nodes

0

1

2

3

4

#
C
h
an
ge
d
In
st
an
ce
s

L-JORP Greedy Optimal

(b) Number of changed instances.

Fig. 4: Evaluation of JORP over long run (5 timeslots).

optimal node with only 2931 nodes as shown in Fig. 3b. The
trajectory of the optimal cost in each step is also zoomed in
to illustrate the behavior of the cost when it reaches to the
convergence. Especially, L-JORP spends only 15.24 seconds
to obtain the optimal solution since we use the lookup table
to get the solution directly whenever the optimization nodes
are already saved in our database.

Finally, we conduct the optimality gap between our frame-
work and others by scaling up the network setting from 15 to
40 nodes. For each setting, we have to do the training before
executing the evaluation. In this evaluation, we compare L-
JORP with the relaxed mixed-integer nonlinear programming
(RMINLP) based algorithm [18] and BnB algorithm in solving
JORP. Fig. 3c illustrates the significant gap between RMINLP
and BnB when scaling up the system. Meanwhile, L-JORP
follows strictly the trend of the optimal line from small to large
settings. Thus, the result demonstrates a certain capability
of L-JORP in finding the optimal solution for JORP under
different network settings.

2) The efficiency of JORP: We conduct the following
experiment to evaluate the JORP’s efficiency. As shown in
the objective function of JORP, our model is to minimize
the implementation cost in terms of number of instances that
need to be placed and the changes of allocation. During 5
timeslots, Greedy approach attempts to place VNF instances
to satisfy service constraints. Since it does not consider the
optimal placement, the number of used instances is highest
compared to others with 112 instances. Especially in Fig. 4a,
it only places a few instances into cloud nodes with 14 VNF
instances while Optimal can place 29 instances. JORP can
reduce 19.6% the number of instances during 5 timeslots
compared to Greedy baseline. Furthermore, the distribution
of instances in the system of JORP shows the load-balancing
ability when it can mitigate the unbalanced phenomenon as
in case of Greedy (i.e., many instances are placed in a node
while other nodes are low-utilized).

In addition, the efficiency of JORP is demonstrated in
Fig. 4b by the number of changed instances. Concretely, during
5 timelots, Greedy gets the highest of change compared to
JORP and Optimal with 35 instances while JORP can reduce
up to 65.4% the result of Greedy during the considered time.
The main reason of the highest change in the Greedy is from
its unawareness of previous placement scheme.

V. CONCLUSION

In this article, we consider the joint dynamic routing and
VNF placement problem for IoT service implementation. We
formulate JORP to minimize the operational cost of imple-
menting IoT services that is subject to all the resource and

latency constraints. The problem is formulated regarding the
long run of the system with the time-varying workload. In
order to find the solution for JORP, which is NP-hard, we pro-
posed the learning model designed by a DNN to solve JORP
under the procedure of BnB method. We further proposed
a training model using the imitation learning to aggregate
automatically data during the training phase. We show that
JORP outperforms baselines with outstanding processing time.

REFERENCES

[1] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A
survey on the edge computing for the internet of things,” IEEE Access,
vol. 6, pp. 6900–6919, 2018.

[2] N. Wang, B. Varghese, M. Matthaiou, and D. S. Nikolopoulos, “Enorm:
A framework for edge node resource management,” IEEE Transactions
on Services Computing, 2017.

[3] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopou-
los, “Challenges and opportunities in edge computing,” arXiv preprint
arXiv:1609.01967, 2016.

[4] Docker. [Online]. Available: https://www.docker.com/
[5] OpenStack Neat: A Framework for dynamic consolidation of virtual

machines in OpenStack Clouds a blueprint. [Online]. Available:
http://www.cloudbus.org/reports/OpenStack

[6] Kubernetes. [Online]. Available: https://containership.io/
[7] Cloud iot edge - google cloud. [Online]. Available: {https://cloud.

google.com/iot-edge}
[8] A. Leivadeas, G. Kesidis, M. Ibnkahla, and I. Lambadaris, “Vnf place-

ment optimization at the edge and cloud,” Future Internet, vol. 11, no. 3,
p. 69, 2019.

[9] H. Zhang, Y. Xiao, S. Bu, D. Niyato, F. R. Yu, and Z. Han, “Computing
resource allocation in three-tier iot fog networks: A joint optimization
approach combining stackelberg game and matching,” IEEE Internet of
Things Journal, vol. 4, no. 5, pp. 1204–1215, Oct 2017.

[10] J. Wang, H. Qi, K. Li, and X. Zhou, “Prsfc-iot: a performance and
resource aware orchestration system of service function chaining for
internet of things,” IEEE Internet of Things Journal, vol. 5, no. 3, pp.
1400–1410, 2018.

[11] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Communications Surveys
Tutorials, vol. 15, no. 4, pp. 1888–1906, Fourth 2013.

[12] M. Conforti, G. Cornuéjols, and G. Zambelli, Integer programming.
Springer, vol. 271.

[13] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters
et al., “An algorithmic perspective on imitation learning,” Foundations
and Trends R© in Robotics, vol. 7, no. 1-2, pp. 1–179, 2018.

[14] J. F. Riera, E. Escalona, J. Batall, E. Grasa, and J. A. Garca-Espn,
“Virtual network function scheduling: Concept and challenges,” in Smart
Communications in Network Technologies (SaCoNeT), 2014 Interna-
tional Conference on, June 2014, pp. 1–5.

[15] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures
in data centers: measurement, analysis, and implications,” in ACM
SIGCOMM Computer Communication Review, vol. 41, no. 4. ACM,
2011, pp. 350–361.

[16] R. Rojas, Neural networks: a systematic introduction. Springer Science
& Business Media, 2013.

[17] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics, 2011, pp. 627–635.

[18] Y. Cheng, M. Pesavento, and A. Philipp, “Joint network optimization
and downlink beamforming for comp transmissions using mixed integer
conic programming,” IEEE Transactions on Signal Processing, vol. 61,
no. 16, pp. 3972–3987, 2013.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on August 10,2020 at 20:59:16 UTC from IEEE Xplore. Restrictions apply.

