
Energy Efficient Software Update Mechanism for
Networked IoT Devices

Ngoc Hai Bui, Kim Khoa Nguyen, Chuan Pham, Mohamed Cheriet
Synchromedia - École de Technologie Supérieure, University of Quebec, Canada

Email: {ngoc-hai.bui.1, chuan.pham.1}@ens.etsmtl.ca, {kim-khoa.nguyen, mohamed.cheriet}@etsmtl.ca

Abstract—Due to security issues and incremental user require-
ments, software in IoT devices needs to be changed frequently.
Recently, advanced IoT devices employ the component-based
software architecture in which components can be updated at
run-time. In such IoT networks, devices can download updated
components from neighbor nodes, enabling quick deployment of
updates in the entire network. A key operation which consumes
a significant amount of energy in the update process is flash re-
writing, in which the order of re-writing components into the
memory is decisive for energy consumption. In this paper, we
propose a mechanism that schedules updates on all devices in an
IoT network to minimize the energy consumption, taking into
account the deadline constraint for updating the entire network.
We introduce a novel energy model of the update process, then
propose an algorithm to approximate the optimal schedule for
updating all devices in the network. Simulation results show that
our algorithm can obtain a near optimal which is, on average,
7.1% different from the global minimum.

Index Terms—energy efficiency, software update, IoT device,
component-based IoT software.

I. INTRODUCTION

In the technological revolution represented by the Internet
of Things (IoT), a tremendous number of IoT devices can
interconnect and provide various intelligent services and appli-
cations [1]. In order to adapt requirements of IoT applications,
software in IoT devices needs to be changed frequently to
improve existing functionalities or to fix revealed bugs. To
maintain effective operations, software update must become
an integral part of IoT systems.

Research on software update for wireless sensor/IoT net-
works can be classified into three main categories: Data
dissemination, data minimization, and execution environment
[2]. Data dissemination protocols [3] focus on the ways to
deliver software updates in the network, to minimize com-
munication costs. On the other hand, data minimization [4]
focuses on reducing the size of updates, and has a direct
impact on the energy used for communication and processing.
Therefore, it not only helps extend sensor network lifetime,
but also decreases updating time. In addition, the execution
environment such as virtual machine [5], image-based and
component-based [6], also has a significant impact on how
the software in an IoT device can be updated. Recently, the
common execution environment in advanced IoT devices is
component-based, such as Contiki, SOS [7], in which software
is partitioned into small blocks, so called components, which
can be added or updated at run-time. In such environment,
only parts of the entire software need to be changed during

b c

software components

path of updating b

 path of updating c

1

2

3

gateway

IoT device

update control

0

a d

component dependency

Fig. 1: An IoT network with a gateway is responsible to update
IoT devices.

the update process, allowing to reduce the amount of data
needed to transfer. For example, in Fig. 1, each device is
running Contiki and has to send temperature information to
a gateway every ten minutes. Device software consists of four
components a, b, c and d; component a reads temperature data
from sensors, component b processes the data, component c
sends the data and component d is the main task control.
When the programmer wants to change the data processing
algorithm and the sending protocol (e.g., from UDP to TCP),
he will generate only two new components b′ and c′ to replace
b and c, respectively, instead of the entire new software as in
legacy devices. These components are typically compiled as
Executable and Linkable Format (ELF) files [8], they can be
downloaded an stored in a buffer such as EEPROM, then the
Contiki core will link them to existing components and load
into the flash memory in run-time.

Prior research on component-based software for IoT devices
often focuses on the ways a component is replaced [8],
[9], [10], and does not consider thoroughly how updates are
distributed, especially when multiple updates are required at
the same time. In this paper, we consider an application
consisting of a number of component-based IoT devices with
the same software connected to a gateway, and a set of
components needs to be updated to all devices. In this context,
a peer-to-peer approach can help reduce the time to deploy
the update, since a device can download updated components
from multiple neighbor devices at the same time through
near-field communications (e.g., Bluetooth or WiFi) without

978-1-7281-0962-6/19/$31.00 ©2019 IEEE
Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on August 10,2020 at 20:52:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Software components in flash memory of an IoT device
and the corresponding component constraint graph.

having to rely on a more expensive communication with the
gateway. Also, caching the update in the gateway [2] is a
good solution because devices do not need to get all the new
components from the Internet. In the example presented in Fig.
1, component b′ is transferred from the gateway to devices 1
and 3, then it is sent to device 2 from 1. In contrast, component
c′ is transmitted from the gateway to 3, from 3 to 2 and from
2 to 1, consecutively.

Inside an IoT device, software components are written in
a sequence in flash memory as shown in Fig. 2a, from low
addresses to high addresses. Each component may occupy
several memory pages. When a component is updated (assume
its size changes), its memory pages need to be re-written
completely and all the components placed next to it in the
memory have to be shifted to other addresses [11]. Hence, all
these components also need to be re-written. In this context,
different orders could result in different numbers of re-written
blocks. For instance, two components b and c in Fig. 2a,
account for 3 and 2 pages in the flash, respectively. Suppose
that we update both b and c with the new components b′ and c′

that have both 4-page size. In the first case, if the update order
is (c, b), we have to re-write 4 pages of c′ and the component
after c that is a, then 4 pages of b′, 4 pages of c′ and a again,
so the total number of re-written pages are 12 plus twice the
size of a. On the other hand, if we update b first, we have to
re-write 4 pages of b′, only 2 pages of current size of c and
pages of a, then 4 pages of c′ and pages of a again, so the
total pages are 10 plus twice the size of a, that is smaller than
the first case.

Furthermore, in component-based software systems, some
components may call the others during their execution [8].
This dependency leads to an update order constraint, in which
a component can only be updated when the components it
depends on had all been updated, otherwise an inconsistency
error would be experienced. Since a big amount of energy
is consumed for flash re-writing [12], determining an optimal
update order is substantial for reducing energy consumption
in device software update operation. Some work [13] also

mentioned the update order constraint, however, this constraint
and its impact on energy has not been considered thoroughly
in previous studies.

In our work, we propose a mechanism that schedules
updates on all devices to minimize the energy consumption,
taking into account the component dependencies and the
deadline constraint for updating the entire network. A schedule
is a plan specifies two decisions: First, where a component
can be downloaded for each device; second, when it can be
downloaded. Our main contributions are as follows:

• A mathematical formulation of the optimization problem
for scheduling updates over an IoT network, that min-
imizes the total energy consumption of devices during
update.

• A novel energy model of the update process of IoT
devices, considering the component update order.

• An algorithm to approximate the optimal schedule for
updating all devices in the network.

The rest of this paper is organized as follows. In section II,
we present the system description. Section III mathematically
formulates the problem. Our proposed algorithm is introduced
in section IV. Section V shows our simulation results followed
by our conclusion.

II. SYSTEM DESCRIPTION

A. IoT sofware components

We consider the case in which a gateway downloads soft-
ware updates from a server running on the cloud, and then
send to a number of devices of the same type (i.e., having
the same hardware and software configuration). Thanks to
the component-based architecture, a device does not need to
update all new components at a time, but one by one. During
update period, the device can maintain operation with both
old and new components, in other words, at a moment, some
components are completely updated, and some others are still
keeping the old version. Since a component may call some
others, their dependency causes the order constraints that need
to be satisfied by the update schedule, in which a component
can only be updated when the components it depends on had
all been updated.

The software component constraint can be considered as
a directed acyclic graph D =< VD, AD > with VD is the
set of components and AD is the set of arcs which presents
component constraints. The graph D can be represented by a
matrix MD = {cm,n} where each entry with value 1 denotes
an arc (m,n) ∈ AD, means that a component m is called by
component n. An example of such a graph is presented in Fig.
2b. In this example, the device can update component d only
after it finishes updating components a, b and c.

Each component occupies a number of memory pages,
which is the smallest unit that can be erased and re-written.
The modification of any byte in a page will result in the entire
page needs to be re-written. Consider a set of components
a, b, c and d that lie in the flash as shown in Fig. 2a. We
assume the size of c grows after the update (c′ is bigger than

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on August 10,2020 at 20:52:38 UTC from IEEE Xplore. Restrictions apply.

c); then all the components lie after c in the memory will have
to be shifted to higher addresses. Thus, even if a is not in the
update list, it will be moved to a new location. There is a call
from d to a, the address of this call instruction needs to be
altered and the corresponding page - the page number 4 in Fig.
2a has to be re-written. We assume the energy consumption
in a flash re-writing operation is proportional to the number
of pages modified in this operation.

B. System model

We consider a model of an IoT network including a number
of connected IoT devices and a gateway. The gateway manages
IoT devices and is responsible for scheduling updates for
the devices. Both the gateway and devices are considered
as nodes in a graph G =< VG, EG >, with VG is the set
of vertices and EG is the set of edges representing nodes
and links, respectively. Let VG = {i| i = 0, 1, |VG|}, in
which i = 0 represents the gateway, and IoT devices are
corresponding to i > 0. G can be represented by a symmetric
matrix MG = {ei,j} where each entry ei,j = 1 presents the
link between two nodes i and j. For simplicity, we suppose
that every connection between a device and the gateway has
the same bandwidth bg , and bandwidth of every connection
between two devices also has the same value bd.

A device receives components from both the gateway and
other devices. It can download from or send to multiple
nodes at the same time, but can only download at most one
component from one corresponding node at a time. A device
can only send a component to other devices after it completes
downloading this component. Since the total update time is
also important, it is necessary to limit the amount of time to
perform update in the entire network by a deadline Tmax. We
can also assume that the installation time of devices is much
smaller than the download time and can be skipped.

Let ai,j,m denotes the assignment of equals to 1 if device
i downloads component m from gateway/device j, and xi,m

denotes the start time device i downloads component m. The
update schedule of each device i is characterized by the sets
{ai,j,m} and {xi,m}. In our problem, we need to find an
optimal schedule for the entire network, which minimizes the
total energy consumed during update process while satisfies
the four constraints: (i) the dependency order constraint of
components, (ii) the constraint that a device can only send a
component after having it, (iii) the constraint that a device can
download at most one component from one source at a time,
and (iv) the deadline constraint of updating the entire network.

We remark that the computation of our scheduling is
centralized, i.e., the schedule is computed by a centralized
controller running in the gateway [14], as presented in Fig. 1.
The update process of the entire network is implemented as
follows: At the beginning, the gateway stores all components,
it calculates the schedule and follows this schedule to control
the update process. At each scheduled time, the gateway sends
a message to each assigned device to specify that this device
can download which component from which source. The
process finishes when every node has all the new components.

III. PROBLEM FORMULATION

In this section, we present the energy model for the update
process in an IoT device and the optimization model of our
energy efficient software update scheduling problem.

A. Energy consumption model

As mentioned in Introduction, each new component is
buffered in a dedicated space in EEPROM and then written
to the flash. We denote the size of the update of a component
m ∈ VD by snewm , and the size of m before update by soldm . The
amount of time device i completely downloads component m
is represented by ti,m and can be calculated as:

ti,m =

{
0, i = 0,

ai,0,m × snew
m

bg
+ (1− ai,0,m)× snew

m

bd
, i > 0.

(1)

In (1), ti,m is 0 if device i is the gateway, otherwise ti,m
is calculated by dividing the size of m to the corresponding
bandwidth. The amount of energy consumed when a device i
updates a component m can be calculated as:

Ei,m = e×snewm

ρ
+ λm

 ∑
h∈α(m)

size(h)

ρ
+

∑
h∈α(m)

∑
k∈β(m)

ch,k

 ,

(2)

where e is the energy consumption for writing one page, ρ is
the size of one page, λm is a binary indicator that equals to 1
if snewm ̸= soldm , because if m does not change its size (snewm =
soldm), we do not need to shift the following components. α(m)
is the set of components lie after m and β(m) = VD\(α(m)∪
m) is the set of components lie before m in the flash memory.
The binary indicator ch,k is corresponding to an entry (h, k)
in matrix MD that equals to 1 if k depends on (calls) h, in
this case, when shifting h to new address, we need to re-write
the (one) page in k that contains the instruction calling h. And
size(h) is the size of component h at the moment updating
m, i.e., size(h) is snewh if h is updated before m, otherwise
size(h) is soldh . We compute size(h) as:

size(h) = snewh δh,m + soldh (1− δh,m), (3)

where the variable δh,m indicates that h is updated before m
or not:

δh,m =

{
1 xi,h + ti,h < xi,m + ti,m,

0 xi,h + ti,h ≥ xi,m + ti,m.
(4)

Given a device with a fixed number of components, we can
easily see that the quantity

∑
h∈α(m)

∑
k∈β(m)

ch,k in equation

(2) is constant and does not depend on the update order.
Since we want to find an optimal update order to reduce
the number of re-written pages, we can skip this quantity
without affecting our scheduling solutions. Also, with the
assumption that component sizes always change, means that
λm = 1, ∀m ∈ VD, then we can have the simplified form of
Ei,m as follows:

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on August 10,2020 at 20:52:38 UTC from IEEE Xplore. Restrictions apply.

Ēi,m =
e

ρ

snewm +
∑

h∈α(m)

(
snewh δh,m + soldh (1− δh,m)

) .

(5)
The value of Ēi,m depends on each component h ∈ α(m) is
updated before or after updating m.

The energy Ei consumed when device i updates all new
components is:

Ei =
∑

m∈VD

Ēi,m. (6)

Ei can be considered as a function of {ai,j,m} and {xi,m}.

B. Optimization model

For the convenience of discussion, the notations are sum-
marized in table I.

TABLE I: Notations

Notation Description
VG Set of nodes (gateway and IoT devices)
VD Set of software components
snew
m New size of component m
soldm Current size of component m
Tmax The deadline for all devices complete updating
ti,m Duration that a node i completely downloads component m
ei,j Binary indicator indicates the link between devices i and j

cm,n Binary indicator indicating component n calls component m

Decision variables

ai,j,m A variable equals to 1 if device i downloads component m
from device/gateway j

xi,m Start time device i downloads component m

The optimization model for our scheduling problem is
formulated as:

min

|VG|∑
i=1

Ei. (7)

Subject to:

ai,j,m ∈ {0, 1}, ∀i, j ∈ VG,m ∈ VD. (8)

xi,m ≥ 0, ∀i ∈ VG, i > 0,m ∈ VD. (9)

x0,m = 0, ∀m ∈ VD. (10)∑
j∈VG

ai,j,m = 1, ∀i ∈ VG, i > 0,m ∈ VD. (11)

ai,j,m ≤ ei,j , ∀i, j ∈ VG, i > 0,m ∈ VD. (12)

ai,j,m(xi,m − xj,m − tj,m) ≥ 0, ∀i, j ∈ VG, i > 0,m ∈ VD.
(13)

ai,j,mai,j,n(xi,m − xi,n − ti,n)(xi,n − xi,m − ti,m) ≤ 0,

∀i, j ∈ VG,m ̸= n ∈ VD.
(14)

cm,n(xi,n − xi,m − ti,m) ≥ 0, ∀i ∈ VG,m, n ∈ VD. (15)

xi,m + ti,m ≤ Tmax, ∀i ∈ VG,m ∈ VD. (16)

In our model, constraint (8) is the value constraint, each
variable ai,j,m can only be 1 or 0 to indicate if device j
download component m from device i or not. Constraint (9)
indicates that each start time needs to be greater or equal to
0. Condition (10) means that the gateway does not download
from any source. The constraint that a device only downloads
a component m from one other node is indicated in equation
(11). Constraint (12) is the network topology constraint, means
that a device i can download from device/gateway j only
if there is a link (i, j). Constraint (13) indicates that a
device j can only send a component to a device i after it
finishes downloading this component, with tj,m is calculated
by formula (1). Constraint (14) shows that a device can only
download one component from each other node at a time, in
other words, in one link there are at most one component
is transferred in one moment. Constraint (15) indicates the
download order of each device needs to satisfy the component
constraint graph. And finally, condition (16) is the deadline
constraint Tmax.

IV. ALGORITHMIC SOLUTION

We propose an algorithm called ESUS to solve the problem
of energy efficient update scheduling for IoT networks. Our
proposed algorithm employs procedure P1 to generate an
energy efficient schedule without considering the deadline
constraint Tmax. The outline of P1 is described in Algorithm
1, this procedure is based on the idea of dividing the schedule
into steps. At each step, each device i maintains a list of
downloadable components, and a list of possible sources
(other devices or the gateway), that can be represented as a
bipartite graph Bi. P1 finds a matching of Bi with the aim
to maximize the number of components can be downloaded
in the step. To do that, the Matching function sequentially
chooses the component that have smallest number of sources,
then randomly assigns a source to this component and updates
source lists of other components. After matching, P1 calculates
xi,m for each downloaded component m so that the order of
download complete time (that is xi,m + ti,m) is same as the
order of components in the flash, that helps reduce the number
of re-written pages. This idea is based on the update order
example in Introduction. An example of a bipartite graph is
shown in Fig. 3, at this step, device 2 has three downloadable
components a, b, and c that lie in its flash as in Fig. 2a.
With this graph, it can get all the components by downloading
a from gateway, b from device 1 and c from device 3. In
this case, P1 adjusts x2,a, x2,b and x2,c so that the device 2
completes downloading b first, then c and a, according to the
order in the flash.

In case Tmax is not satisfied by the initial schedule given
by P1, ESUS employs the procedure P2 to properly adjust
the schedule to reduce the update time. P2 analyzes and shifts
the download time to the earliest as possible. It sequentially
performs on each component m, P2 checks the paths of

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on August 10,2020 at 20:52:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: A bipartite graph presents downloadable components of
device 2 and corresponding sources at a step, with a matching
and corresponding download time. The thicker edges in the
graph present the matching.

Algorithm 1: P1 - Generate a schedule

1 repeat
2 Each step, do
3 for each device i do
4 Construct the bipartite graph Bi;
5 Do Matching the bipartie graph Bi;
6 With {m} is the set of downloaded components

given by Matching, set each xi,m is the
finishing time of the previous step, then adjust
{xi,m} so that {xi,m + ti,m} have the order as
in the flash;

7 end
8 Calculate the finishing time of this step;
9 until all nodes complete downloading all components;

distributing m in the network. For each device i downloads
m, it checks if the start downloading time xi,m can be shifted
to an earlier one. That is, if the source of i has m sooner than
xi,m, and if i has all the necessary components called by m
before xi,m, then P2 changes xi,m to the earliest as possible.
P2 iterates the components in a topological order, it means
that when examining a component m, all the components that
m depends on are already adjusted. Due to the randomness of
P1, ESUS runs the two procedures in a number of iterations
N and chooses the best solution. The outline of our main
algorithm - ESUS is presented in Algorithm 2.

V. SIMULATION RESULTS

In order to evaluate the performance of our proposed algo-
rithm, we use the CPLEX solver [15] to find optimal schedules
for our scheduling problem. Besides that, we also employ
CPLEX to find a random feasible schedule for each network
instance, that is a schedule satisfied all the constraints but does
not minimize the energy objective function. We calculate the
energy consumption of those random schedules and compare
to results of ESUS algorithm and optimal solutions given by
CPLEX solver.

Algorithm 2: ESUS Algorithm

1 for t from 1 to N do
2 Generate schedule St by P1;
3 if St does not satisfy Tmax then
4 Adjust St by P2;
5 end
6 if St still does not satisfy Tmax then
7 Start new iteration t+ 1;
8 end
9 else

10 if St is better than current best solution then
11 Update the best solution is St;
12 end
13 end
14 end

TABLE II: Sizes of a 9 component set used in the simulation.

Component a b c d e f g h k

snew
m (kB) 16 32 32 24 32 32 32 16 16

soldm (kB) 8 8 8 8 8 8 8 8 8

A. Settings

In our simulation, we vary the number of nodes |VG|
from 10 to 30, number of component |VD| from 5 to 9. For
each component set, each soldm is set to the same fixed size,
and the corresponding snewm is created by multiplying soldm

with a random number. An example of {snewm } and {soldm }
of a set including 9 components is shown in Table II. A
corresponding constraint graph is also randomly created for
each set of components. Without loss of generality, we define
a full mesh topology in which all devices can connect to
each other as well as connect to the gateway, so G is a
complete graph, such topology can be common in smart home
and smart building applications. The deadline Tmax is chosen
to ensure that feasible schedules exist, to do that, we use
CPLEX solver to find the minimal time Tmin for updating the
network, then choose Tmax > Tmin. Our selected parameters
are summarized in Table III.

TABLE III: Parameter settings for simulation.

Parameter ρ bg bd soldm Tmax N

Value 4KB 4KB/s 8KB/s 8KB 50 s 20

B. Results

1) Evaluation with different software component sets: Fig.
4 shows the results corresponding to a network instance of 10
nodes with different software component sets. We can see that
results of ESUS are close to the minimal solutions given by
CPLEX, with 7.1% difference on average and the closest is
only 3.2% different. Fig. 4 also shows that ESUS outperforms
the random schedules, with up to 30.8 % re-written pages
saved.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on August 10,2020 at 20:52:38 UTC from IEEE Xplore. Restrictions apply.

5 6 7 8 9
0

250

500

750

1000

1250

N
u
m
b
er
o
f
re
-w
ri
tt
en
p
ag
es

Number of components

Optimal

ESUS

Random Schedule

Fig. 4: Comparison of number of re-written pages with differ-
ent component sets.

TABLE IV: Comparison between average running time of
ESUS algorithm and CPLEX.

Number of Nodes 10 15 20 25 30

TCPLEX (s) 9.43 94.15 642.72 787.84 8734.43

TESUS (s) 0.044 0.053 0.084 0.099 0.142

2) Evaluation with different number of nodes: In another
scenario, we fix the component set to the one in Table II, and
examine the results with different number of nodes. As shown
in Fig. 5, ESUS can approximate the optimal solutions in all
cases, and its results are better than random schedules in most
cases. We also see that both ESUS solutions and the optimal
ones are almost linearly related to the number of nodes, that
is because of the mesh network topology in our simulation.

3) Performance examination: In terms of performance, we
compare the running time of ESUS with CPLEX. ESUS is
implemented in Java, both CPLEX and ESUS are run on a
desktop computer with 3 GHz 4-core processor with 8 Gb
RAM. We perform on three different sets from 7 to 9 com-
ponents with different number of IoT nodes and Tmax = 50s.
The running time are shown in Table IV, let TESUS be the
average time taken by ESUS, and TCPLEX be the average
elapsed time by CPLEX solver. We can observe that ESUS
runs much faster than CPLEX, especially when the number of
nodes increases.

VI. CONCLUSION

In this paper, we have presented the problem of energy
efficient software update scheduling in component-based IoT
device networks. We formulated the problem as an opti-
mization problem with a novel energy model for the update
process. We then proposed ESUS algorithm to find a near-
optimal schedule for updating all devices in the network.
Through simulation results, we showed that our algorithm can
effectively approximate the optimal solution given by CPLEX
solver with much lower running time.

In the future, we will extend our work by considering
specific network topologies and different application demands,

5 10 15 20 25 30 35
500

1000

1500

2000

2500

3000

N
u
m
b
er
o
f
re
-w
ri
tt
en
p
ag
es

Number of nodes

Optimal

ESUS

Random Schedule

Fig. 5: Comparison of number of re-written pages with differ-
ent number of nodes.

other kinds software execution environment such as virtual
machine or image based will also be taken into account.

REFERENCES

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE communications surveys & tutorials,
vol. 17, no. 4, pp. 2347–2376, 2015.

[2] S. Brown and C. Sreenan, “Software updating in wireless sensor net-
works: A survey and lacunae,” Journal of Sensor and Actuator Networks,
vol. 2, no. 4, pp. 717–760, 2013.

[3] C. Dong and F. Yu, “An efficient network reprogramming protocol for
wireless sensor networks,” Computer Communications, vol. 55, pp. 41–
50, 2015.

[4] W. Dong, B. Mo, C. Huang, Y. Liu, and C. Chen, “R3: Optimizing
relocatable code for efficient reprogramming in networked embedded
systems,” in 2013 Proceedings IEEE INFOCOM, pp. 315–319.

[5] M. Kovatsch, M. Lanter, and S. Duquennoy, “Actinium: A restful
runtime container for scriptable internet of things applications,” in 2012
3rd IEEE International Conference on the Internet of Things. IEEE,
2012, pp. 135–142.

[6] A. Taherkordi, F. Loiret, R. Rouvoy, and F. Eliassen, “Optimizing sensor
network reprogramming via in situ reconfigurable components,” ACM
Transactions on Sensor Networks (TOSN), vol. 9, no. 2, p. 14, 2013.

[7] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes, “Operating systems
for low-end devices in the internet of things: a survey,” IEEE Internet
of Things Journal, vol. 3, no. 5, pp. 720–734, 2016.

[8] P. Ruckebusch, E. De Poorter, C. Fortuna, and I. Moerman, “Gitar:
Generic extension for internet-of-things architectures enabling dynamic
updates of network and application modules,” Ad Hoc Networks, vol. 36,
pp. 127–151, 2016.

[9] W. Munawar et al., “Dynamic tinyos: Modular and transparent incre-
mental code-updates for sensor networks,” in 2010 IEEE International
Conference on Communications. IEEE, 2010, pp. 1–6.

[10] M. Amjad, M. Sharif, M. K. Afzal, and S. W. Kim, “Tinyos-new trends,
comparative views, and supported sensing applications: A review,” IEEE
Sensors Journal, vol. 16, no. 9, pp. 2865–2889, 2016.

[11] W. Dong, C. Chen, J. Bu, and W. Liu, “Optimizing relocatable code
for efficient software update in networked embedded systems,” ACM
Transactions on Sensor Networks (TOSN), vol. 11, no. 2, p. 22, 2015.

[12] R. K. Panta, S. Bagchi, and S. P. Midkiff, “Efficient incremental code
update for sensor networks,” ACM Transactions on Sensor Networks
(TOSN), vol. 7, no. 4, p. 30, 2011.

[13] W. Dong, C. Chen, J. Bu, and C. Huang, “Enabling efficient reprogram-
ming through reduction of executable modules in networked embedded
systems,” Ad Hoc Networks, vol. 11, no. 1, pp. 473–489, 2013.

[14] M. Barcelo, A. Correa, J. Llorca, A. M. Tulino, J. L. Vicario, and
A. Morell, “Iot-cloud service optimization in next generation smart
environments,” IEEE Journal on Selected Areas in Communications,
vol. 34, no. 12, pp. 4077–4090, 2016.

[15] Cplex optimizer. [Online]. Available: https://www.ibm.com/analytics/
cplex-optimizer

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on August 10,2020 at 20:52:38 UTC from IEEE Xplore. Restrictions apply.

