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Phishing-Aware: A Neuro-Fuzzy Approach for
Anti-Phishing on Fog Networks

Chuan Pham ', Luong A. T. Nguyen, Nguyen H. Tran

Abstract—Phishing detection is recognized as a criminal issue
of Internet security. By deploying a gateway anti-phishing in the
networks, these current hardware-based approaches provide an
additional layer of defense against phishing attacks. However,
such hardware devices are expensive and inefficient in operation
due to the diversity of phishing attacks. With promising technolo-
gies of virtualization in fog networks, an anti-phishing gateway
can be implemented as software at the edge of the network and
embedded robust machine learning techniques for phishing detec-
tion. In this paper, we use uniform resource locator features
and Web traffic features to detect phishing websites based on
a designed neuro-fuzzy framework (dubbed Fi-NFN). Based on
the new approach, fog computing as encouraged by Cisco, we
design an anti-phishing model to transparently monitor and pro-
tect fog users from phishing attacks. The experiment results of
our proposed approach, based on a large-scale dataset collected
from real phishing cases, have shown that our system can effec-
tively prevent phishing attacks and improve the security of the
network.

Index Terms—Phishing websites, neuro-fuzzy network, neural
network, fuzzy, fog computing, cloud computing.

I. INTRODUCTION
A. Phishing Websites

HISHING is a criminal activity that steals victims’
Ppersonal information using misleading emails or fake
websites [1]. The word “phishing” is originated from the word
“fishing” [2]. Online users can be easily deceived into enter-
ing their personal information because phishing websites are
highly similar to real ones. Maliciously, by creating phish-
ing sites, “phishers” use a number of techniques to fool their
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Fig. 1. Phishing reports received in the period of October-December 2016 [3].

victims, including email messages, instant messages, forum
posts, phone calls, and social networking information [3].
Phishing results in severe economic loss all over the world, and
phishing sites are also growing rapidly in quantity and com-
plexity. According to reports from the Anti-Phishing Working
Group [3], the number of phishing attacks is increasing by
5% monthly. Fig. 1 illustrates the urgency and importance of
phishing identification in modern society, which is based on a
phishing website report received in the first quarter of 2016 [3].

However, at the edge of networks, the anti-phishing prob-
lem has not been well-addressed due to the following reasons.
First, mobile users check their emails and use Web browsers
more frequently than desktop users [4]. Thus, they are much
more likely to access on phishing sites that have not yet been
detected or taken down by anti-phishing applications and fire-
walls at their local networks or on their devices. Second,
mobile devices are always “hungry” for energy and computing
resources (e.g., limitations of CPU, memory, and user inter-
faces), so anti-phishing tools are usually ignored or removed
on these devices. Hence, it is hard for users to discern if
an incoming link is legitimate or not. Third, existing anti-
phishing tools (e.g., default plug-ins on Web browsers or local
anti-phishing applications) are inefficient in terms of detec-
tion (this will be analyzed concretely later in Section III), and
mobile users may be exposed to phishing attacks when engag-
ing in usual behaviors. According to the report [5], mobile
users are three times more likely to submit their login infor-
mation than desktop users do. Therefore, preventing phishing
attacks against terminal users is a critical issue in the edge of
networks.

As discussed in [6], there are three classes of technical
methods to identify phishing websites, including the
blacklist/whitelist methods [7], [8], the Web structure-based

1932-4537 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Bibliothéque ETS. Downloaded on August 10,2020 at 20:37:23 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-1430-3443
https://orcid.org/0000-0001-7323-9213
https://orcid.org/0000-0003-3484-7333

PHAM et al.: PHISHING-AWARE: NEURO-FUZZY APPROACH FOR ANTI-PHISHING ON FOG NETWORKS

VM VM | VM

1077

VM VM

S ——
Virtualization
L

Datacenters

Cloud

Fig. 2. Fog computing architecture: using virtualization techniques, fog nodes can provide services at the edge of a network.

methods [9] and the Web content-based methods [6].
The blacklist methods are often deployed in practice due to
their inexpensive cost and speed of detection [10]. On the other
hand, although Web content-based methods can detect phish-
ing websites with high accuracy [6], they are difficult to apply
in real-time detection. The network operator can combine
content-based methods and blacklist/whitelist methods by reg-
ularly creating a large amount of automated agents to collect
webpages or receive phishing reports from users, then analyze
the content and update the blacklist/whitelist database [11]. In
this paper, we design a neuro-fuzzy network model that uses
detection features of the blacklist/whitelist and Web-structure
methods. Our approach improves not only the accuracy of
phishing identification compared to existing methods, but also
the detection performance at the edge of the network.

B. Fog Computing
Services on Fog

Paradigm  and  Anti-Phishing

Focusing on the edge of networks, Cisco recently intro-
duces the concept of fog computing, which extends the cloud
so that it is closer to users [12]. Fog computing also provides
data, computing, storage and application services to end-users
as well as cloud computing. In addition, at the edge of net-
works, fog supports high mobility and a dense geographic
distribution [12]. Strong characteristics of fog networks now
pull services provided at places near the end-users, such as
access gateways, or even the set-top-box, as shown in Fig. 2.

Can we use the advantages of fog networks to develop anti-
phishing tools at the edge of networks, where a base station
(BS) or an access point (AP) can support security services
for mobile devices? It is possible with the help of network
function virtualization (NFV) [13] in the fog network, where

a fog node now has sufficient resource capacity to virtualize
any network function, such as a firewall, an anti-virus, and
an anti-phishing function. Further, it is also more tractable
and significant to embed machine learning techniques on fog
nodes than on hardware-based devices. A fog-based service
can enhance the performance compared to existing cloud-
based methods [14]-[16] since fog nodes are located at the
edge of networks. Last but not least, deployment of an anti-
phishing service on fog nodes does not degrade the computing
resources of mobile devices as much compared to installing
directly anti-phishing applications on these devices.

For the client side, by adding an anti-phishing gateway at
the network edge, phishing websites can be stopped before
reaching user devices, so an identification procedure can work
transparently for terminal users. In this paper, we design a
neuro-fuzzy model in the fog network (called Fi-NFN) to
detect phishing URLs in real time. We further mitigate the
arbitrary IF-THEN rule set in the phishing detection of the
neural network model of [17] and combine the neural net-
work with the fuzzy model to improve the performance. The
main contributions of this paper are summarized as follows:

e We design input features, which combine by three

useful URL features (PrimaryDomain, SubDomain,
PathDomain) and three Web traffic features (PageRank,
AlexaReputation and GoogleIndex). Especially, we use
Googlelndex instead of using Google search results like
traditional methods to improve the accuracy (this will be
explained later in Section IIT). These features are more
readily available and faster than web-content features [18]
in terms of gathering features and detecting phishing
websites.

e We develop a new neuro-fuzzy approach without using

IF-THEN rules to identify phishing. We are motivated
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by a prior study [17] that used the conventional neural
network model. Combining the neural network with
the fuzzy model, we obtain a good result in terms of
identification accuracy.

e Our Fi-NFN classification model enhances the classifica-
tion accuracy to 98.36% and improve the convergence of
the training phase. Furthermore, our system can achieve
real-time response and stable performance to detect
phishing URLs.

e To apply phishing identification using a neuro-fuzzy
method in a fog network, we propose a detection frame-
work to protect the terminal users. The framework con-
tains with two components: the identification component
and the back-end component. The identification compo-
nent is deployed at the fog nodes to observe and detect
URL requests. This component is aware of danger and
prevents users from accessing phishing websites. The
back-end component is placed on the cloud and plays
a role as a management tool. One of the important con-
tributions of our paper is we design a model with two
isolated components that are adapted to the fog archi-
tecture. This is helpful in detecting phishing sites wih
real-time responses at the fog nodes and easily maintain-
ing the system for tasks, such as training and updating
parameters for the identification component.

o In order to validate the efficiency of our model, we con-
duct extensive simulations. The results show that our
model outperforms state-of-the-art methods in terms of
the accuracy of phishing detection and the response time.

The rest of the paper is organized as follows. In Section II,

we discuss related work. In Section III, we describe the back-
ground knowledge and propose the system model on the
fog network. The neuro-fuzzy approach is introduced and illus-
trated concretely in Section IV. All simulations and numerical
results are discussed in Section V. Finally, we conclude our
work in Section VI

II. RELATED WORK

In this section, we present the information related to state-
of-the-art anti-phishing mechanisms and fog computing that
is essential to the theory behind our work. There are a lot
of different studies regarding phishing identification including
phishing websites, phishing emails and phishing applications.
Here, we only investigate phishing websites and research
trends related to our work.

A. Anti-Phishing Mechanisms

As mentioned above, the blacklist/whitelist meth-
ods are wused in many studies and in practice
[71, [8], [15], [16], [19], [20]. However, these methods

has to maintain a list of phishing websites using a
manual/automatical update process as shown in Fig. 3.
URL requests are checked before launching based on a
local database or a database on the cloud. Even though the
blacklist/whitelist techniques has quick detection, managing
the blacklist/whitelist database is inefficient for both the local
database and the cloud database due to the rapidly increasing
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Fig. 3. The blacklist/whitelist mechanism in phishing detection.

number of phishing sites. Therefore, heuristic and machine
learning approaches have been received much attention in
terms of automatic detection. This can be seen as a hybrid
approach that uses blacklist/whitelist methods to protect users
at the front end (i.e., the client side), while machine learning
techniques are used at the back end (i.e., the server side) to
detect phishing and update on the blacklist/whitelist database.

Several machine learning techniques focus on the Web
structure or Web content-based methods to detect phishing
URLs [6], [17], [18], [21]-[26]. One well-known approach
in extracting Web page features to detect phishing sites
is Cantina+ [18]. This approach is based on 15 features
Web pages, including URL features and content features,
which are expensive during the analysis. Another robust
work focusing on URL features [26] presented the effective-
ness of many approaches in the classification of phishing
URLSs; however, they did not concretely consider the com-
bination of multiple features to enhance the identification
performance.

Based on certain page-ranking features, the authors
in [25] and [27] developed Web structure-based approaches to
identify phishing Web pages by using the Google PageRank
value. However, using only the PageRank value is insufficient
to identify phishing URLs due to the following reasons. First,
many phishing websites are created on popular websites such
as blogs or Google sites, where the ranking features (e.g.,
domain age [25]) are not useful for phishing identification.
Second, new URLs have low ranking values that are similar
to phishing URLs. In some specific cases, we cannot obtain
PageRank values from the API correctly. Such specific cases
cannot be detected by [18] and [25]. Hence, combining many
features is necessary to reduce the amount of missed detections
for phishing identification.

In other trends of the machine learning approach, phishing
websites can be identified based on a rule set [21], [22], [24].
In [24], the authors proposed a fuzzy technique based on 27
features of a Web page, classified into three classes. Using
a rule set [21], [22], they obtained fast detection. However,
there are some weaknesses in their methods. For example, the
rule set is not objective and greatly depends on the developer.
Another limitation is the weights of each main criteria [24]
that are used without clarification. Finally, heuristic parameters
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are very sensitive and difficult to apply in practice due to the
complexity of phishing sites.

Another approach in machine learning is the neural net-
work [17] that has attracted much attention in the literature.
However, this work did not clarify the design of input features
and the neural network model, such as how to represent input
features in the network, and how to integrate the phishing
information to train the network. To improve the performance
of the neural network model, we design a neuro-fuzzy network
model with six URL input features. We can easily integrate
the phishing information into the neuro-fuzzy network through
the learning process to enhance the convergence of the training
phase.

Toward implementing a phishing identification framework
in practice, we next discuss the trend of deploying services in
networks, where multiple services are pulled to execute at the
edge of networks.

B. Fog Computing: A Practical Environment

With the development of cloud computing, there are bil-
lions of devices connected to the Internet that require mobility,
geo-distribution, location awareness and low latency [28].
Fog computing, a new network paradigm, is an extension of
cloud computing and services to the edge of the network.
The comparison between cloud computing and fog computing
in [29] shows advantages of the fog computing. It becomes a
promising architecture to be adapted to Future Internet.

Specifically, prior studies in fog networks [30], [31] have
proposed security models, in which a fog node can play a role
as a gateway to identify illegal transactions from fog users.
For anti-phishing issues, models that are used to protect
clients as gateways or firewalls are already implemented, such

s [15], [16], [19], and [32]; however, they mostly rely on
traditional proprietary purpose-built hardware. A fog-based
anti-phishing deployment can automatically detect phishing
URLSs. Furthermore, we can flexibly embed machine learn-
ing techniques to improve performance [12] since a fog node
has powerful computing resources. In particular, fog nodes can
be deployed underlying network function virtualization tech-
nologies, in which anti-phishing tools can be run as a virtual
machine and share resources with other functions of the fog
nodes, such as routers or gateways [33]. Consequently, for-
base implementation is our target to deploy an anti-phishing
service at the edge of network.

III. IDENTIFYING PHISHING SITES AND THE SYSTEM
MODEL ON FOG NETWORKS

To easily understand how to identify phishing sites, in
this section, we briefly discuss some background knowledge
related to phishing identification and illustrate our proposed
anti-phishing model in fog.

A. Preliminaries

1) Phishing Identification Tools: Following the approach
using URL and Web traffic features, we show some famous
techniques used to detect phishing websites and related to our
work.
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e WHOIS: The WHOIS function provides details about
the date of registration, update and expiration, the reg-
istrar [34]. Phishing sites are often unstable, and their
registration dates are often newer than those of the legit-
imate sites. Moreover, many phishing sites contain IP
addresses in their URLs [35]. Therefore, WHOIS is a
helpful tool for detecting phishing sites.

e DNS Blacklist: There are many blacklist providers that
contain a list of phishing sites. These providers fre-
quently update their database and support query methods
for users, for example SORBS [36], URIBL [37], and
SURBL [38].

e Browser toolbars: Browser toolbars provide a client-side
defense for user browsers [23]. Whenever a user vis-
its a website, the browser toolbar will filter URLs from
the address bar, then refer to a blacklist database. If the
URL exists on that database, a special warning will be
responsed to the user. Google Toolbar [20] is a popular
tool integrated as a Firefox browser extension. In addi-
tion, there are several safe browsing tool bars that work
with Chrome, Safari, and Internet Explorer [20].

o Network Appliance: To combat phishing and other
Internet attacks, a network appliance, such as a fire-
wall or a gateway in a network, can be implemented.
Trend Micro [19] and Symantec [39] have developed
joint Internet access and security solutions as a safe-
guard [32]. Such hardware tools often need to refer local
or online URL blacklist databases. They can carry out
well a small network; however they lack of flexibility
in update that needs to adapt to diversity of phishing
websites. Furthermore, some middle-layer defense mod-
els and third-party models are proposed in practice [40],
even though they still raise much discomfort level in
mobile users as they require many communication steps
to protect mobile users.

In the next part, we illustrate the identification features and

discuss how to use them in phishing detection.

2) Identification Features: Phishers usually try to make the
Internet addresses (URLs) of phishing sites similar to legit-
imate sites to fool online users. However, they cannot reuse
URLs of legitimate sites that are already registered. Based on
various characteristics of URLSs, we indicate the differences
between a legitimate URL and a phishing URL.

o Features of URL: The structure of URL is as follows:

<protocol> :// <SubDomain> . <PrimaryDomain>
. <TLD> / <PathDomain>. For example, the URL:
http://paypal.abc.net/ index.htm includes the following
six elements: the protocol is http, the SubDomain is
paypal, the PrimaryDomain is abc, the top-level domain
(TLD) is net, the Domain is abc.net, and the PathDomain
is index.htm.
There exist many differences between phishing URLSs
and legitimate URLs that can be used to recognize eas-
ily based on URL features. In particular, we describe
in detail three features: the PrimaryDomain, SubDomain
and PathDomain of the URL.
— PrimaryDomain: Phishers cannot use the origi-
nal PrimaryDomain since it is already registered
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by the original company. Hence, phishers reg-
ister misspellings or similar PrimaryDomain of
phishing websites to fool users. For example,
URL www.paypall.com looks similar to the well-
known website www.paypal.com.

— SubDomain: Phishers often prepend the domain of
phishing websites to their website. For example,
phishers prepend the SubDomain “paypal.com” to
any other domain (e.g., “.i0”, “.biz”) that may fool
users into the phishing URLS.

— PathDomain: This is a sub-folder of the URL.
Phishers can also use the PathDomain to fool users.
For example, phishers may navigate users to the
URL www.attack.com/paypal, where a phishing web-
site interface is similar to the original one. Carelessly,
the users will think that this URL is from the
“paypal.com” site. Especially, using mobile devices
with small graphic interfaces, it may be too difficult
to recognize such phishing URLs.

Using these features, we can identify a phishing website
by measuring the similarity score between legitimate and
phishing websites. However, it is inapplicable to be used
only these features in practice since a legitimate web-
site owns multiple similar URLs. For example, although
“nld.com.vn” has a high similarity score with the legit-
imate URL, “nld.vn”, it is also a legitimate URL that
points to the same website. Multiple similar URLs, used
for load balancing techniques, are deployed in many Web
services, which can be a challenge when using this score.
Therefore, we combine URL features with Web traffic
features to improve the performance.

Features of Web traffic: Most of the lifetime, legitimate
websites are safe for users to browse. Thus, they have
high ranks from search engines [25]. Meanwhile, phish-
ers usually create fake sites to mimic famous sites. Such
phishing sites have low ranks. Espcially, phishers can not
fake ranking values from search engines and ranking sys-
tems [41]. The famous ranking systems are used in our
work as follows

— PageRank [25], [42]: Google search engine uses a
link analysis algorithm [43] to build PageRank val-
ues. Most phishing Web-pages have low PageRank,
because these sites exist only for a short time.

— AlexaReputation [44]: AlexaReputation value of a
website is calculated as the number of links from
other webpages to itself. AlexaReputation is similar
to Pagerank, where AlexaReputation values of phish-
ing websites are much lower than the values of the
legitimate sites.

— Googlelndex [45]: Google index lists all legitimate
sites that are visited by agents of Google. Google fre-
quently updates this index list for its search engine.
The values of GoogleIndex for phishing websites are
much smaller than those of legitimate sites.

In this paper, we use famous ranking systems to identify
phishing sites. They look similar; however, combining
them can improve the accuracy of detection due to the
following reason. First, with new URLs that have just

€)@ itps://ww google.com/Tgws_rd=ssFq=ebe

Google  eney

Did you mean: ebay

Ebey's Landing National Historical Reserve (US National Park
wwwnps.

Today this Nati
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(a) Search engine cannot detect incorrect words for the
phishing domain name.
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(b) Incorrect words for the phishing domain
name do not exist in GoogleIndex.

Fig. 4. Comparison of detecting phishing domain names between the Google
search engine and GoogleIndex.

been created, GoogleIndex system returns empty val-
ues, while others can compensate with positive values.
Second, GoogleIndex is not a ranking system, but it owns
huge dataset and trusted results. This combination reflects
exactly the lifetime of URLs. Other features, such as spe-
cial characters in URLs or the number of dots, the length
of URL, can be used to detect phishing websites [10], but
they are really specific, and attackers can replace or fake
them easily. In this work, we focus on detecting phishing
attacks in real time. Hence, the system has less time to
analysis and make a decision. Therefore, we do not select
identification features that cannot analyze in real time.
GoogleIndex is a new feature in our work, mean-
while traditional methods are based on the Google search
results [17], [18], in which they use the query results from the
Google search engine to lookup phishing terms in a domain
name or a host name. If the received results are in the top
(e.g., top 30), they will not be considered as phishing sites.
Unfortunately, based on search engines, many phishing sites
cannot be recognized. For example, for a phishing website
that changes the domain name from “ebay” to “ebey”, Google
search engine stills show this term in top 30 as illustrated in
Figure 4(a). Meanwhile, the GoogleIndex does not index this
term in the suggestion system, which rarely appears in query
history, as shown in Figure 4(b).
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Next, we discuss the background needed for the neuro-fuzzy
network in the next part, in which we present clearly all the
design layers as well as computations to train and identify
phishing URLs.

3) Neuro-Fuzzy Network System: A neuro-fuzzy network
refers to a combination of the artificial neural network and
the fuzzy logic in the field of artificial intelligence [46]. For
neural networks, the knowledge can be automatically achieved
based on the backpropagation training, but the learning pro-
cess is slow. Also, it is difficult to integrate special information
about the knowledge of training datasets to improve the learn-
ing process [46]. For fuzzy systems, they are restricted to the
fields where the knowledge is available to build the rule set and
where the number of inputs is small. To overcome the prob-
lem of knowledge acquisition, the cooperative approach, i.e., a
neuro-fuzzy network, can optimize certain parameters of fuzzy
systems as well as enhance the training process of the neural
network. In the literature, the efficiency of the neuro-fuzzy net-
work approach is shown in several approaches, such as image
processing, pattern recognition. In this work, we advocate the
neuro-fuzzy network approach for phishing identification in
fog network.

There are some hybrid models of the neuro-fuzzy net-
work. Here, we design a neuro-fuzzy network following the
basic model as depicted in Fig. 5. At first, in response to
the input parameters, the fuzzy interface module provides an
input vector to the neural network. Via the fuzzy module,
specific information for the input data is embedded before
training in the neural network, which can improve the training
performance and decision process.

Consider a simple neural network, as shown in Fig. 6. We
present mathematical calculations relevant to this neuro-fuzzy
network as follows. The input signal is a vector £ with n
elements x; that interact with the weight vector w to produce
a vector p by p; = w;z;,1 = 1,2,...,n. The information is
aggregated as follows:

n
net = Zi:l Di. (1)
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The neuron uses an active function f{z) (e.g., a sigmoid

function f(t) = ﬁ) to compute the output:

y=fmet) = F(3 pi). @)

A fuzzy model can be integrated differently into a neu-
ral network model to improve the training phase [47]. Fig. 5
shows a design, where the membership function sigmod [46]
is used to fuzzify and defuzzify the input values. Similar to
the neural network model, the fuzzy output is now calculated
as follows:

Y= f(ne) = F(3 wiXs). 3)

where X is the fuzzy input signal and f(t) = (1 + e~%)~!
is the sigmoid function. By Zadehs extension principle [48],
the membership function of the fuzzy output Y is calculated
as follow

Y (1) = {(Z?zl wiX;)(F7HE)  if0<t<T,

0 otherwise,

“4)

where f~1(¢t) =Int — In(1 — t).

The above example represents a simple computation in the
neuro-fuzzy network. Corresponding to the input parameters
and applications, the design of the neuro-fuzzy network may
be different. In the next section, we discuss the architecture
of the neuro-fuzzy network to detect phishing URLs in the
fog networks.

B. Identifying Phishing Websites in the Fog Architecture

Fog computing is a potential approach to integrate secu-
rity applications at the edge of networks [30]. A fog node is
close to users and can be a local central node, where all traffic
from users is centralized at the fog node. Intrusion detection
techniques can be implemented on a fog node to detect user
behaviors. In this paper, we implement a detection application
on a fog node to identify phishing sites. When local devices
(e.g., cloud users and mobile users) send requests to access the
Internet, the fog node transparently detects request URLs, then
restricts or notifies users, if request URLs are phishing. In this
case, the fog node plays the roles of a monitor and a firewall.
It also illustrates that a fog node can protect users without
installing anti-phishing tools on the local devices. Last but
not least, detecting on the fog nodes is a “quiet” and “smart”
process to the end users since this does not require any con-
figuration on their part or raise a series of confusing questions
or warnings during detection, as the traditional methods have
been done.

In Fig. 7, we design two distinct components in our phishing
identifying model: the identification component on a fog node
and the back-end component in a data center of the cloud. The
identification component is integrated on a fog node and inter-
acts with fog users. It contains a neuro-fuzzy network that is
already trained to classify URLSs into two classes: the phishing
URL class and the legitimate URL class. There is a connec-
tion between these components to update trained parameters
of the neuro-fuzzy network. On the cloud, the back-end com-
ponent also has the same neuro-fuzzy network architecture as
the component in the fog nodes. This component invokes the
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Fig. 7. Phishing identification architecture for the fog network.

training phase in order to update parameters of the neuro-fuzzy
network. It then synchronizes all parameters from the cloud
component to the fog node component. This step does not
spend large network traffic or time consumption to update
the phishing database compared to the blacklist method (the
network traffic measurement is discussed later in Section V).
Further, the training procedure can be invoked and adjusted
easily by administrators in the back-end component. Finally,
the training phase and updating phase do not impact the iden-
tification phase in a fog node. Our anti-phishing model not
only reduces the detection latency at fog nodes, but also alle-
viates the complex computations at the edge of a network. At
a fog node, the propagation from input URLs to the output
can be executed in real time and transparently with regard to
the users.

In summary, our proposed architecture on fog networks can
achieve higher performance compared to existing methods due
to the following reasons:

o Anti-phishing tasks are executed at fog nodes, which
can free up the mobile device’s resources from local
installations.

o Fog nodes are closer to the user devices than the cloud;
thus the response of detection is faster than that of
services deployed on the cloud.

e Fog nodes have powerful resources to integrate and
execute the phishing identification application in real
time based on the neuro-fuzzy network. It is also able
to update and train the network without degrading the
nodes’ resources.

IV. NEURO-FUZZY-BASED PHISHING IDENTIFICATION
MODEL ON THE FOG NETWORK

A. The Five-Layer Neuro-Fuzzy Network Architecture

In this subsection, we present in detail our model for
URL classification. The designed neuro-fuzzy network model
(called Fi-NFN) is illustrated in Fig. 8. Fi-NFN includes five
layers, combining the fuzzy model and neural network model
as follows.
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Fig. 8.  The five-layer neuro-fuzzy network (Fi-NFN) architecture. This
architecture includes six input nodes, five layers and one output node.

o The first layer, called the input layer of Fi-NFN, con-
tains six nodes. The values of those nodes are crisp
values (defined by the vector x) of the fuzzy module.
Each element value of x is extracted from the features
described in Section III-A2. Three of six input fea-
tures are text strings that need to be represented as real
values for input nodes. We use two algorithms (i.e.,
Algorithm 1 for the PrimaryDomain and Algorithm 2 for
the SubDomain/PathDomain) to compute the similarity
score between an input text string and a string name
suggested by the Google suggestion API [49]. Those
domain features look similar; however, they are owning
different properties, for example a PrimaryDomain can-
not be empty as SubDomain/PathDomain, or a phishing
PrimaryDomain often contains an IP address.

Finally, other input values are from domain rank features
(such as PageRank, GoogleIndex and AlexaReputation)
presented in a previous Section III-A2.

Note that some input nodes can be “null” when the sys-
tem cannot collect sufficient information; for example,
values of Web traffic features can be empty due to their
non-existence on Google or Alexa. Therefore, Fi-NFN
allows “null” values in the input vectors. To validate the
performance , we also make many case studies (discussed
later in Section V) instead of conducting studies of only
ideal cases as in existing works [50], [51].

o For the second layer of Fi-NFN, Fig. 8 shows the values
of all nodes that are fuzzified underlying the left and right
sigmoid membership functions [52]. Depending on each
feature of an input node, we use membership functions
with different settings as follows:

1
Li(z;) = T3 o—(a—b)’ ®)
P e” () 6
i(7i) = T4 @by’ (6)
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Algorithm 1:
PrimaryDomain

Calculating the Heuristic Value of

Input: d is a PrimaryDomain
Output: The heuristic value of PrimaryDomain

if d is IP then
//Phishing suggestion
Return d belongs to a phishing site;
else
Result = SuggestionGoogle(d);
if Result is NULL then
‘ //Legitimate suggestion

Return d belongs to a legitimate site;
else
value = Levenshtein(Result, d);
Return value;

end

end

Algorithm 2: Calculating the Heuristic Value of

SubDomain/PathDomain

Input: m is a SubDomain/PathDomain
Output: The heuristic value of SubDomain/PathDomain

if m is NULL then
//Legitimate suggestion

Return m belongs to a legitimate site ;
else
Result = SuggestionGoogle(m);
if Result is NULL then
//Legitimate suggestion

‘ Return m belongs to a legitimate site;
else
value = Levenshtein(Result, m);
Return value;

end

end

where 1z; is the input variable of input node
i,1=1,2,...,6 and b; is a parameter assigned dif-
ferently for PrimaryDomain, SubDomain, PathDomain,
PageRank, GoogleIndex and AlexaReputation.

o The defuzzification is processed from the second layer to
the input of the fourth layer. The connections from all
legitimate nodes (L;) in the second layer are linked to
node T7. Similarly, all phishing nodes (P;) are linked to
node T». Each node computes the firing strength of the
associated rule. This layer gathers the respective values
of the phishing and legitimate features. The output values
of the nodes are crisp values that indicate the phish-
ing/legitimate percentage of an URL. The calculation is
presented as follows:

6
ar = [] Li(x),
i=1

6
ag = [] Pi(=). (7
=1
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Fig. 9. The sigmoid function shows the threshold to indicate the phishing
set and the legitimate set.

e The fourth layer of Fig. 8 contains two nodes
N7 (Normalization Legitimate) and N (Normalization
Phishing), which indicate the normalization of the fir-
ing levels. The normalization function is necessary to
enhance the training phase [53]. The outputs of these
nodes are calculated as follows:

Bi = 2aZ y

j=1y

i=1,2. (8)

o The final layer in our model Fi-NFN is the output layer
that is calculated by

2
Or =) wifi, ©)
=1

where w; is the weight of the node N; in the fourth layer.
From (9), we apply the following sigmoid function as the
activation function for the output node:

1

00:f(01):m7

(10)
where O, is the output value of Fi-NFN.
As shown in Fig. 9, the shape of the sigmoid function
forms the separation threshold between two sets.

Our model is designed to flexibly control the threshold in
the fuzzy network layer instead of modifying dozens of rules
as in [52]. In Fi-NFN, we only need to adjust b; and the
learning rate to improve the accuracy of phishing identifi-
cation. Furthermore, we can easily add or remove features
in the first layer to adapt to the diversity of phishing web-
sites. In that case, the architecture of Fi-NFN needs to change
the vector of input nodes without updating the IF-THEN rule
set. The remaining layers and calculations of Fi-NFN are still
consistent. For scalability, we define a maximum input vec-
tor with n elements, where unassigned inputs are set to 0.
Connections between layers 1 and 2 are initialized as a matrix
(n x 2), while links of unassigned input features are 0. In
the worst case with maximum » features, Fi-NFN can iden-
tify a phishing website after 2 x n+7 calculation steps (i.e.,
2 X n calculation steps to fuzzify n input features at the
second layer, 2 aggregation steps of the third layer, 2 nor-
malization steps at the fourth layer, 2 multiplication steps
with the weight parameters, and the activation step at the
output node).
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TABLE I
THE TRAINING DATA SET

No Input values Desired output values
1 W = {z1,20,..., 26} yD
2 z(? = {z1,22,....,x6} y2)
K 25 = {z1,22,...,76} y O

B. The Training Phase of Fi-NFN

In this model, we shall describe the delta learning rule with
the sigmoid activation function (9). Suppose given a training
dataset as shown in Table I.

The system first uses the input vector, x(k), to produce its

output vector, ng), based on (5)-(10) and then compares this
with the desired output, y(k). For each pair k of input/output,
we measure the error between the desired output value y(k)

and the output ng) as follows:

B _ %(yuc) _ Ogm)?

Consequently, the summation of the errors in the training
dataset is given as follow

K
E=Y" E®).
k=1

We apply the gradient descent method for updating the weights
following the presentation of the input/output pair k (i.e., we
minimize the quadratic error function). The update step for
the next iteration k + 1 is represented as follows:

w1 — (k) _ R(;;(k))’,

where R is a positive constant called the learning rate. Consider
f(.) to be the sigmoid function, then the gradient vector of the
error function is calculated as follows:

() = 3 ()
- (yac) _ ng)) otk (1 _ 0(()1@))/,(@.

Therefore, the weight update can be rewritten as follows:

Wk — (k) _ R<y(k) _ ng)) o) (1 _ ng)>ﬂ(k).
(16)

(1)

(12)

(13)

(14)

15)

We now summarize the training phase of the Fi-NFN model
as follows:
o Step I: R > 0, Eypreshold > 0 are chosen.
o Step 2: Initialize the weights w at small random values,
k < 1 and the running error E < 0.
o Step 3: The input z(¥) and the output ng)
by (5)-(10).
o Step 4: The weight w is updated by (16).
e Step 5: The cumulative cycle error is calculated by

E:=F+ %(y(k) — O((,k))Q.

are calculated

A7)
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Calculate the output node of the neuro-fuzzy
network
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End of the identifying phase

Fig. 10. The identification phase at a fog node.

o Step 6: If k < K then k < k + 1 and then go back to
Step 3, otherwise go to Step 7.

o Step 7: Stop the training session if E<Eipreshold-
Otherwise, E < 0 and go back to Step 3.

C. Identification Phase for the Fog Nodes

The training phase is an iterative propagation to update all
the weights in Fi-NFN until convergence, meanwhile the iden-
tification phase only executes forward the propagation from the
input to the output layer. All updated parameters and weights
in the training phase are sent and synchronized from the cloud
component to all fog nodes, as depicted in Fig. 7. The identifi-
cation phase is invoked at the fog nodes to detect URL requests
from the fog users.

As mentioned in Section III-B, the phishing identification
component operates at a fog node, monitoring and detecting
phishing sites for users. Whenever receiving URL requests
from fog users, this component extracts features, and then
inputs such values into the first layer of Fi-NFN. If the out-
put value of the fifth layer is greater than the identification
threshold, such an URL is a legitimate URL, otherwise it is a
phishing URL. The flow of the identification phase is presented
in Fig. 10.

V. SIMULATION AND NUMERICAL RESULTS

In this section, we discuss our settings and datasets for the
evaluation of our model. We implemented and performed side-
by-side comparisons with prior works. Furthermore, we have
built a test-bed as a fog network to validate the performance
of our proposed algorithm.

A. Settings

We collected 11,660 URLs for phishing sites from
PhishTank [7] and 10,000 URLs for legitimate sites from
DMOZ [54] to make the training and testing datasets in
both traditional and fog networks. We then randomly divide
this dataset into the training dataset and the testing dataset
following the ratio 75:25.
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TABLE II
THE DISTRIBUTION OF DATASET

Feature vector size for setting | b; < 3 b; <4 b; <5
the URL features threshold
11600 (phishing URLSs) 72.143% 78.106% 82.062%
10000 (legitimate URLSs) 83.533% 72.006% 63.062%
Feature vector size for setting | b; <6 b <7
the PageRank threshold
11600 (phishing URLSs) 100% 88.396%
Feature vector size for setting | b; < 20 b; <21
the AlexaReputation threshold
11600 (phishing URLSs) 100% 82.132%
Feature vector size for setting | b; < 15 b; < 16
the GoogleIndex thresholds
11600 (phishing URLSs) 100% 88.382%

TABLE III

PARAMETERS b; FOR THE MEMBERSHIP FUNCTION

Value Description
4 Used for the PrimaryDomain, SubDomain, PathDomain value.
6 Used for the PageRank value.
20 Used for the AlexaReputation value.
15 Used for the GoogleIndex value.

TABLE IV

PARAMETERS OF THE FI-NFN MODEL

Name Value
FEihreshold 0.5-1077
Epoch threshold 1000

Weights (w1, w2) Initialize randomly from -0.5 to 0.5
Identifying threshold 0.5

In order to set values for the parameters b;, we derive the
proper settings of parameters (shown in Table III) based on
the observation in the whole dataset. We also present the
observation results in Table II) to illustrate how we set the
values for b;.

Other parameters are shown in Table IV. We divide the
testing dataset into three URL sets, including the long URL set
(i.e., URLs with full features), the short URL set (i.e., URLs
that lack features), and the random URL set. Finally, the
weights (wy, wy) are initialized randomly from —0.5 to 0.5.

B. Results

We conduct the simulation using the above datasets and
settings. The convergence, accuracy of phishing identification,
and response time are recorded as outputs of our simulation.
We compare the performance of Fi-NEN to the current bench-
mark approaches, such as Fuzzy [24], Neural network [17],
Google PageRank [42], eMCAC [22] and FACA [21]. First,
we provide a brief outline of those methods that we compare
Fi-NFN with:

o Fuzzy: We compare Fi-NFN with an online algorithm that
classifies URLs using the fuzzy approach. Essentially,
Fuzzy is built by a rule set based on the URL charac-
teristics [24].

o Neural network: Neural network is an approach proposed
by [17] using the neural network model to identify phish-
ing URLs. We implement a three-layer model and use our
dataset to train this neural network.
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Fig. 11. Convergence of Fi-NFN.

TABLE V
TRAINING DURATION

Size of the training dataset Time
5000 URLs 985 s
6000 URLs 1141 s
7000 URLs 1342's
8750 URLs 1498 s

e Google: This is the popular tool of Google [20], which
can be easily installed on Web browsers. GoogleToolbar
can detect phishing terms based on input keywords. In
this work, to evaluate the performance of our approach,
we develop an application that calls the Google API to
detect phishing URLs at fog nodes instead of installing
them on user devices.

e eMCAC [22] and FACA [21]: These are new approaches
based on the rule set method to detect phishing URLs.
Similar to the Google API, we implement eMCAC and
FACA on fog nodes for detection.

1) Evaluation in a Traditional Environment (Convergence):
To evaluate the convergence of Fi-NFN, we run with different
learning rates from 0.1 to 0.9. Fig. 11 shows the convergence
of our model after more than 800 epochs. Corresponding to
our setting, we observe that our model obtained the most
rapid convergence and the lowest error with the learning rate
R = 0.7. Furthermore, we evaluate the duration of the training
phase for different sizes of the dataset. The results in Table V
show that the training duration does not increase exponentially
when increasing the number of sites.

Accuracy: We first evaluate the impact of various learning
rates on Fi-NFN. The accuracy results are given in Fig. 12,
where we use three types of URLs. Our model achieves the
best average accuracy when the learning rate R is set by 0.7.

In another evaluation, we use three measurements as fol-
lows:

— Accuracy: The rate of websites that are correctly detected,

calculated by: #True phishing+-#True legitimate .

o Total sites . .
— Sensitivity:  The rate of legitimate  websites
that are  correctly

detected, calculated  by:
#True legitimate

#£True legitimate+# False alarm websites *

— Specificity:  The rate of phishing  websites
that are correctly detected, calculated by:
##True phishing

##True phishing+#Missed detection websites
The results in Fig. 13 show the high values of Accuracy,
Specificity, and Sensitivity. The figure also illustrates some-
what inconsistent performance for the short URL type, which
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Fig. 14. Evaluation of combination features in phishing identification.

often has empty input values. In detail, short URLs contain
two types of URLs, one type has full traffic history, such as
the values of PageRank, AlexaReputaion, and Google Index,
while another type lacks any of this information. By combining
various independent features to classify URLs, we can enhance
the identification performance. Fig. 14 shows a significant
improvement when using multiple features in phishing identi-
fication as compared to only using domain features (denoted
as Domain in the legend) or only using Web-traffic features
(denoted as Web-traffic in the legend). We also compare our
method with Fuzzy and Neural network. To evaluate, we cre-
ate 132 testing sets that are randomly chosen from the dataset
above with 1000 URLs in each set. We show results of these
comparisons in Fig. 15. In particular, the snapshot of all testing
result is shown in Fig. 15a, where our method illustrates a very
high performance. Specifically, our method has an average
accuracy of 98.36%, while Fuzzy obtains an average accuracy
rate of 88.19% and Neural network has an average accuracy
rate of 95.61%. Moreover, Fig. 15b illustrates not only the high
accuracy, but also the stable characteristics of our method. The
median block of our method is the smallest, meaning that the
average accuracy among 132 testing sets is more stable than
those of Fuzzy and Neural network. To illustrate three cases
of phishing identification, such as long URLs, short URLs,
and random URLs, we make a comparison with state-of-the-
art methods to evaluate our model, including Neural network,
Fuzzy, eMCAC and FACA. We choose these approaches for

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 3, SEPTEMBER 2018

100 gp——— p \go T T

95} e o e e e *o H oo 4+

% - s " . N
E . L +
K b . . o . o 4+
§ 85 —. . . :. . e o0 c. . . . . o + ++ 1
. . O  Fi-NFN
80 *  Fuzzy
*+  Neural network

75 I I I I N N
0 20 40 60 80 100 120 140

Testing sets

(a) Evaluation of accuracy with testing sets.

—/
-
95\ - 1
g | I
> |
§ 90 | R
3 L
2 +
851 b J
I
I
801 —— B
Fi-NFN Fuzzy Neural network
(b) Evaluation of the median accuracy.
Fig. 15. Comparison of our method Fi-NFN with Fuzzy and Neural network.

comparison since i) they can be implemented to protect the
client side, ii) they can respond in real time, and iii) they are
related to our approach in terms of detection features. By using
Fuzzy, the accuracy is not stable since it depends on the defini-
tion of the rule set. Even though eMCAC and FACA are new
methods using rule sets, they still achieve low performance
in our testing datasets. Actually, for eMCAC and FACA, we
implement rule sets that are different from their works because
our dataset is only used for URL features. We build the rule
set as mentioned in Table III and in [22], then use their algo-
rithms to detect phishing URLs. Without using the full features
as in [22] and [21], these approaches cannot achieve high
performance in all cases, as shown in Fig. 16. Furthermore,
entirely based on the rule sets, Fuzzy, eMCAC and FACA are
all strongly sensitive to the rule set definitions and the thresh-
olds. This performance degradation is illustrated in Fig. 16b
when we increase the threshold b; (it leads to change policies
in the rule set). For Fi-NFN, it looks more stable and performs
better than Neural network and Fuzzy in terms of accuracy
measurement, even when the threshold b; is increased, as
shown in Fig. 16. With short URLs, Fi-NFN outperforms the
others since the neuro-fuzzy network can learn similar URLSs
from the training set. Moreover, Fi-NFN is not strongly sensi-
tive to the setting parameters after training, when we change
parameters b;.

2) Implementation and Testing on a Fog Node: We setup
one testbed for the simulation on a fog network with one
powerful computing signboard, Odroid-XU3 [55] to act as a
fog node. The detailed configuration of the fog node is as
follows: Android OS v4.4, Exynos 5422 Octa 1.8GHz, Mali-
T628 MP6, 2GB RAM, 32 GB storage, Wi-Fi 802.11 a/b/g/n,
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Fig. 16. Comparison of our method Fi-NFN with state-of-the-art methods.
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Fig. 17. The fog network testbed.

and Wi-fi Direct. To measure the performance of our model in
fog networks, we implement Fi-NFN as an application on the
fog node. We also implement Neural network, Fuzzy, FACA
and Google API methods on the fog node to compare with
Fi-NFN. Especially for Google API, we develop an applica-
tion that calls Google API to detect phishing URLs instead of
installing GoogleToolbar application on user devices. We then
run the simulations during 10 hours with automated agents, as
demonstrated in Fig. 17. These agents automatically and con-
tinuously send URL requests to the fog node. When receiving
URL requests, the fog node automatically invokes the identifi-
cation phase to detect URLs. The URL requests of each agent
are extracted randomly from the testing dataset as mentioned
before.

We make a network traffic measurement to compare Fi-NFN
with Google. Our approach consumes less traffic per each
detection compared to Google, even for updating. The result
of our simulation in Table VI illustrates traffic efficiency of
Fi-NFN.

We measure three features to evaluate our model, including
response time, error rate and accuracy. First, we evaluate the
response time by comparing Fi-NFN to other approaches. The
results of Fi-NFN are similar to those of Neural network, as
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TABLE VI
NETWORK TRAFFIC MEASUREMENT

Value

3.528 KB per training phase
0.875 KB per request.

6.383 KB per request.

Name
Fi-NEN
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Fig. 18. Evaluation of the response time (duration of time from sending an
URL request until receiving a response at the user device).
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Fig. 19. Evaluation of the error rate for 10 time slots with the fog test-bed.
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Fig. 20. Comparison of the missed detection and false alarm rates between
FACA, Neural network, Google and Fi-NFN.

shown in Fig. 18. For Fuzzy and FACA, considering detection
based on the rule sets, the response times are faster than that
of Fi-NFN and Neural network. In our test case, we measure
the response time under a good network condition (no network
congestion).

Second, we evaluate the accuracy of phishing detection by
measuring the error rate, the missed detection, and the false
alarm of all agents in the fog network for 10 time slots.
Fig. 19 presents the detection result of Fi-NFN, which is
better than other approaches. The average error rate of Fi-
NEN from the first to the tenth timeslot is in a range from
1.32658% to 1.98724%, which demonstrates the stable per-
formance of our system compared to other approaches. For
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missed detections and false alarms, Fig. 20 shows the aver-
age rate of each approach. Fi-NFN achieves the low rate of
missed detections as well as false alarms during the testing
period. Compared to others, the false alarm rate in Google is
very low, but its missed detection rate is very high. For Neural
network, accurate detection can be achieved with trained URLSs
excluding new URLs or URLs with empty features. The results
of Fuzzy and FACA are similar, showing they do not work
well with the short URL set. Considering both missed detec-
tion and false alarm rates, Fi-NFN outperforms the other
methods.

VI. CONCLUSION

In this paper, we consider the security issues regarding the
fog network to enhance network safety. In particular, we study
the phishing website problem and propose an identification
architecture on the fog network. Based on the advantages of
the fog architecture and the neuro-fuzzy approach, we propose
a phishing identification model, called Fi-NFN, to protect local
devices easily and quickly. Without consuming many resources
from local devices, our Fi-NFN model not only transparently
protects users in real time, but also improves the quality of ser-
vices at the edge of the network. Without using an inefficient
blacklist method, we design a five-layer neuro-fuzzy network
with six heuristic input values (PrimaryDomain, SubDomain,
PathDomain, PageRank, GoogleIndex and Alexareputation).
Our simulation results indicate that the efficiency of phish-
ing identification after training with the training dataset by
improving the average accuracy to 98.36% and reducing the
missed detection and false alarm rates to 0.9% and 0.74%,
respectively. We also compare our approach with current meth-
ods [17], [20], and [24] to evaluate our model. Simulation
results show that our method is more efficient, stable and accu-
rate. Especially, various testing results indicate that our model
in a fog computing environment is not only possible, but also
can be applied practically.
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