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In recent years, we have seen notable changes in the way attackers infiltrate computer

systems compromising their functionality. Research in intrusion detection systems aims to

reduce the impact of these attacks. In this paper, we present a taxonomy of Intrusion

Response Systems (IRS) and Intrusion Risk Assessment (IRA), two important components

of an intrusion detection solution. We achieve this by classifying a number of studies

published during the last two decades. We discuss the key features of existing IRS and IRA.

We show how characterizing security risks and choosing the right countermeasures are an

important and challenging part of designing an IRS and an IRA. Poorly designed IRS and IRA

may reduce network performance and wrongly disconnect users from a network. We

propose techniques on how to address these challenges and highlight the need for a

comprehensive defense mechanism approach. We believe that this taxonomy will open up

interesting areas for future research in the growing field of intrusion risk assessment and

response systems.

ª 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Today’s society relies increasingly on network services to

manage its critical operations in a variety of domains

including health, finances, public safety, telecommunication,

and so on. It is therefore important to maintain high-

availability and adequate response time of these services at

all time. This is threatened by the presence of hostile attackers

that look for ways to gain access to systems and infect com-

puters (Zhou et al., 2010). To mitigate these threats, the

deployment of an appropriate defense mechanism is needed.

As Fig. 1 illustrates, the defense life-cycle includes four
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phases: Prevention, Monitoring, Detection, and Mitigation. The

prevention phase ensures that appropriate safeguards are

placed in different locations to secure services and data. In the

monitoring phase, monitoring tools are deployed to gather

useful host or network information to follow the execution of

the system. The detection phase is where an Intrusion

Detection System (IDS) analyzes the running systems, looking

for deviations from a pre-established normal behavior.

IDSs vary depending on whether they monitor network

traffic (Network-based IDS) or local hosts (Host-based IDS)

(Scarfone and Mell, 2007; Stein et al., 2005; Anuar et al., 2008;

Lazarevic et al., 2003; Xiao et al., 2010). IDSs are divided into

two categories: anomaly-based and signature-based. Anomaly-
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Fig. 1 e Defense life-cycle.
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based techniques rely a two-step process. The first step, the

training phase, a classifier is built using a machine learning

algorithm, such as a decision trees, Bayesian Network, a

Neural Network, etc. (Berkhin, 2001; Adetunmbi et al., 2008;

Han and Kamber, 2006). The second step, the testing phase,

tests the detection accuracy (by measuring true positive and

false positive rates). The anomaly-based detection approach is

able to detect unknown attack patterns and does not need

predefined signatures. However, it suffers from the problemof

characterizing the normal behavior. Signature-based tech-

niques (also known as misuse detection) (The Snort Project,

2009), on the other hand, rely on known patterns (signa-

tures) of attacks. Pattern matching makes this technique

deterministic, which means that it can be customized for

various systems, although it is difficult to find the right bal-

ance between accuracy and generality, which may lead to

false negatives and false positives (Difference between

Signature Based and Anomaly Based Detection in IDS; Yusof,

2009).

The last phase, mitigation, complements the defense life-

cycle by evaluating the severity of attacks and selecting a

correct response at the right time. In the mitigation phase, an

Intrusion Response System (IRS) is responsible for selecting

appropriate countermeasures to effectively handle malicious

or unauthorized activities.

An IRS has to assess the value of the loss incurred by a

compromised resource (Gehani and Kedem, 2004). It also has

to have an accurate evaluation of the cost of the response

(Strasburg et al., 2009; Stakhanova et al., 2007a). Otherwise, an

automated IRS may reduce network performance, or wrongly

disconnect valid users from the network. Moreover, a badly

designed IRS may result in high costs associated with rees-

tablishing the services. This incurred overhead often pushes

the administrators to simply disable the IRS.

Designing an IRS poses several challenges. First, the chain

of vulnerabilities exploited by an attacker can link services on

either a single machine or those on different machines

(Ammann et al., 2002; Jha et al., 2002). The complexity of the
attack makes it a challenge to accurately calculate the risk

impact. Then, there are the many decisions that an IRS needs

to make, which can be summarized in the following

questions:

� Is the attack harmful enough to warrant repelling?

� What is the value (importance) of the compromised target?

� Which set of responses is appropriate for repelling the

attack?

Intrusion Risk Assessment (IRA) is the process of identi-

fying and characterizing risks. The result of risk assessment

helps minimize the cost of applying all available sets of re-

sponses. It may be enough in some situation to only apply a

subset of available responses (Jahnke et al., 2007; Kanoun

et al., 2008). That is said, risk assessment helps an IRS deter-

mine the probability that a detected anomaly is a valid attack

that requires attention (in the form of a response) (Mu et al.,

2008).

In this paper, we classify existing IRS and IRA design ap-

proaches. The goal is to identify the strengths andweaknesses

of existing approaches. We also propose guidelines for

improving IRS and IRA.

The rest of this paper is organized as follows: in Section 2,

we propose our taxonomy of intrusion response and risk

assessment and describe their main elements. A review of

recent existing IRS and IRA is presented in Section 3. Section 4,

we discuss the current state of the intrusion response and risk

assessment, and suggestions for future research which can

improve the current weaknesses of IRS. Finally, in Section 5,

we present our conclusions.
2. A taxonomy of intrusion response
systems and risk assessment

The criteria we propose for classifying IRS and IRA techniques

are discussed in this section. The characteristics of the pro-

posed taxonomy are depicted in Fig. 2. These criteria are based

on extensive review of the literature:

� Level of Automation: An important feature of an IRS is

whether it can be fully automated or requires adminis-

trator intervention after each incident.

� Response Cost: Knowing the power of responses to attune

the response cost with attack cost plays a critical rule in

IRS. The evaluation of the positive effects and negative

impacts of responses are very important to identify

response cost.

� Response Time: This criterion refers to whether the

response can be applied with some delay or before the

attack affects the target.

� Adjustment Ability: Usually, an IRS framework is run with

a number of pre-estimated responses. It is very important

to readjust the strength of the responses depending on the

attacks.

� Response Selection: The task of an IRS is to choose the best

possible response. Existing techniques vary in the way

response selection is achieved.

http://dx.doi.org/10.1016/j.cose.2014.04.009
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Fig. 2 e Taxonomy of intrusion response systems.
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� Applying Location: There are different locations in the

network to mitigate attacks. The location has different

value in terms of online users and service dependencies.

� Deactivation Ability: Another distinguishing feature that

separates IRSs is response deactivation (response life-

time), which can take into account users needs in terms

of quality of service. Most countermeasures are temporary

actions which have an intrinsic cost or induce side effects

on the monitored system, or both (Kanoun et al., 2010).
2.1. Level of automation

Depending on their level of automation, an IRS can be cate-

gorized as notification systems, manual response systems, and

automated response systems.

2.1.1. Notification systems
Notification systems mainly generate alerts when an attack is

detected. An alert contains information about the attack

including the attack description, time of attack, source IP,

destination IP, and user account (Stakhanova et al., 2007b;

Ragsdale et al., 2000). The alerts are then used by the admin-

istrator to select the applicable reactive measures, if any. This

approach is not designed to prevent attacks or to bring back

the systems to a safe mode. Its aim is to notify system

administrator to select an appropriate response.

2.1.2. Manual response systems
In these systems, there are some preconfigured sets of re-

sponses based on the type of attacks. A preconfigured set of

actions is applied by the administrator when a problem arises.
This approach is more highly automated than the notification

systemapproach (Toth and Kregel, 2002; Tanachaiwiwat et al.,

2002). The challenge of this approach is the delay between the

intrusion and the human response (Stakhanova et al., 2007b;

Lee et al., 2002).

2.1.3. Automated response systems
Unlike the two previous methods which suffer from delay

between intrusion detection and response, automated

response systems are designed to be fully automated and no

human intervention is required (Curtis and Carver, 2001;

White et al., 1996). One of the problems with this approach

is the possibility that an inappropriate response will be

executed when a problem arises (Mu and Li, 2010). Another

challenge with executing an automated response is to ensure

that the response is adequate to neutralize the attack.
2.2. Response cost

First, we define the term response cost as follows:

Definition 1 (Response Cost). Response cost is the impact of

applying response in our network in terms of continuing network

services and users’ need. Although the strong response like disabling

daemon has strong ability to mitigate attack and protect our

network, has very high impact on continuing network service and

online users.

Response cost evaluation is an important part of an IRS.

Although many automated IRS have been proposed, most of

themuse statically evaluated responses, avoiding the need for

dynamic evaluation (Shameli-Sendi et al., 2012). However, the

http://dx.doi.org/10.1016/j.cose.2014.04.009
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static model has its own drawbacks, which can be overcome

using dynamic evaluation models for the responses. Dynamic

evaluation will also more effectively protect a system from

attack, as threats will be more predictable. Verifying the effect

of a response in both dynamic mode and static mode is a

challenge. There is a need to specify accurate parameters to

evaluate the quality of the response. For example, if we have

an Apache process under the control of an attacker, this pro-

cess is now a gateway for the attacker to access the network.

The accepted countermeasure would be to kill this potentially

dangerous process. When we apply this response, we will

increase our data confidentiality and integrity (C and I of CIA)

if the process was doing some damage on our system. The

negative impact is that we lose the Apache availability (A of

CIA), since the Web server is now dead which causes the user

websites to be down. Let us imagine another scenario, where

we have a process on a server consuming a considerable

amount of CPU resources that is doing nothing but slowing

down a machine (a kind of CPU DoS). This time, killing the

process will improve service availability (system perfor-

mance), but will not change anything in terms of data confi-

dentiality and integrity. We now have two very different

results for the same response. Also, of the effects of some

responses may depend on the network infrastructure. For

example, applying a response inside the external DMZ is

probably very different from doing so inside the LAN or

“secure zone” in terms of CIA. Responses cannot be evaluated

without considering the attacks themselves, which are

generally divided into the following four categories (Lee et al.,

2002; Haslum et al., 2007):

1) Denial of service (DoS): The attacker tries to make re-

sources unavailable to their intended users, or consume

resources such as bandwidth, disk space, or processor

time. The attacker is not looking to obtain root access, and

so there is not much permanent damage.

2) User to root (U2R): An individual user tries to obtain root

privileges illegally by exploiting system vulnerabilities. The

attacker first gains local access on the target machine, and

then exploits system vulnerabilities to perform the tran-

sition from user to root level. After acquiring root privi-

leges, the attacker can install backdoor entries for future

exploitation and change system files to collect information

(Sabhnani and Serpen, 2003).

3) Remote to local (R2L): The attacker tries to gain unautho-

rized access to a computer from a remote machine by

exploiting system vulnerabilities.

4) Probe: The attacker scans a network to gather information

and detect possible vulnerabilities. This type of attack is

very useful, in that it can provide information for the first

step of a multi-step attack. Examples are using automated

tools such as ipsweep, nmap, portsweep, etc.

In the first category, where the attacker attempts to slow

down the system, we are looking for a response that can in-

crease service availability (or performance). In the second and

third categories, because the system is under the control of an

attacker, we are looking for a response that can increase data

confidentiality and integrity. In the fourth category, attackers

attempt to gather information about possible vulnerabilities
from the network. Thus, responses that improve data confi-

dentiality and service availability are called for. A dynamic

response model offers the best response based on the current

situation of the network, and so the positive effects and

negative impacts of the responsesmust be evaluated online at

the time of the attack. Evaluating the cost of the response in

online mode can be based on resource interdependencies, the

number of online users, the users privilege level, etc. There are

three types of response cost model:

2.2.1. Static cost model
The static response cost ðRs

costÞ is obtained by assigning a static

value based on an expert’s opinion. So, in this approach, a

static value is considered for each response

ðRs
cost ¼ CONSTANTÞ.

2.2.2. Static evaluated cost model
In this approach, a statically evaluated cost, obtained by an

evaluation mechanism, is associated with each response

ðRse
cost ¼ fðxÞÞ. The response cost in the majority of existing

models is statically evaluated. A common solution is to eval-

uate the positive effects (P) of the responses based on their

consequences on confidentiality (C), integrity (I), availability

(A), and performance (P). To evaluate the negative impacts (N),

we can consider the consequences for the other resources in

terms of availability ð:AÞ and performance ð:PÞ (Strasburg

et al., 2009, 2008). For example, after running a response that

blocks a specific subnet, a Web server under attack is no

longer at risk, but the availability of the service has decreased.

After evaluating the positive effect and negative impact of

each response, we then calculate the response cost. One so-

lution is as Eq. (1) illustrates (Mu and Li, 2010), obviously the

higher RC, the better the response in ordering list:

Rse
cost ¼

P
N

¼ Cþ Iþ Aþ P
:Aþ :P (1)

2.2.3. Dynamic evaluated cost model
The dynamic evaluated cost ðRde

costÞ is based on the network

situation. We can evaluate the response cost online based on

the dependencies between resources (Jahnke et al., 2007; Kheir

et al., 2010) and online users. For example, the effect of ter-

minating a dangerous process depends on the number of

other entities (other processes, online users, etc.) that use this

process. If the cost of terminating the process is high then

perhaps another response should be selected. Evaluating the

response cost should take into account the resource de-

pendencies, the number of online users, and the user privilege

levels. In other words, we need an accurate cost-sensitive

response system.
2.3. Response time

In point of response time, IRSs can be classified into type

categories: Delayed and Proactive (Stakhanova et al., 2007b;

Anuar et al., 2010). In the delayed mode, the responses are

formulate only after an intrusion is detected. Most existing IRS

use this approach (e.g., Strasburg et al., 2009; Papadaki and

Furnell, 2006) although it is known to be ineffective for

maximum security. This is because an attacks can cause

http://dx.doi.org/10.1016/j.cose.2014.04.009
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serious harm (stealing confidential information) before an IDS

can detect it. This approach has been criticized because of the

fact that an attack. Take, for example, the case where an

attacker gains access to an unauthorized database. An IDS

may detect this intrusion only after the attacker had illegally

gained possession of critical information. In such as case, a

delayed response would not be useful. Another important

limitation of the delayed approach is that it is often difficult (if

not impossible) to return the system to a healthy state because

of the damages that an attack may cause before it is detected

(Anuar et al., 2008). In contrast, the proactive approach aims to

control and prevent a malicious activity before it happens.

This approach is considered critical for defending hosts and

networks against attacks. The proactive IRS needs an intru-

sion prediction mechanism that usually relies on probability

measures (Feng et al., 2009) and it is often hard to guarantee

that the prediction result is 100 accurate (Stakhanova et al.,

2007b).
2.4. Adjustment ability

There are two types of adjustment models: Non-adaptive and

Adaptive (Stakhanova et al., 2007b; Foo et al., 2005). In the non-

adaptive model, the order of the responses remains the same

during the life of the IRS software. In fact, there is no mech-

anism for tracing the behaviors of the deployed responses. In

the adaptive model, the system has the ability to automati-

cally and appropriately adjust the order of the responses

based on response history (Stakhanova et al., 2007b). The

response goodness concept was introduced by Stakhanova

et al. (2007a), Foo et al. (2005) can be used to convert a non-

adaptive model to an adaptive one.

Definition 2 (Response Goodness (RG)). Response goodness rep-

resents the history of success (Rs) and failure (Rf) of each response to

mitigate attack over time.

The Algorithm 1 can be used to convert a non-adaptive

model to an adaptive one:
Algorithm 1 e Adaptive intrusion response system.
For each response, first we calculate goodness factor (line

3). As a simple way, the response goodness is calculated by

sum of success rates ðPn
i¼1Rsi Þ minus sum of failure rates

ðPm
j¼1Rfi Þ divided by the total number of response deployment.

Then, the response effectiveness (RE) can be calculated by

multiplying the response cost times response goodness (line

4). The response cost can be one of the cost functions

explained in Section B: Rs
cost, R

se
cost, or R

de
cost. Finally, the adaptive

model presents a new ordering list of responses (line 6).
2.5. Response selection

There are three response selection models: static mapping,

dynamic mapping, and cost-sensitive mapping.

2.5.1. Static mapping
An alert is mapped to a predefined response. This model is

easy to build, but its weakness is that the response measures

are predictable by attackers (Toth and Kregel, 2002).

2.5.2. Dynamic mapping
The responses of this model are based on multiple factors,

such as the system state, attack metrics (frequency, severity,

confidence, etc.), and the network policy (Curtis and Carver,

2001). In other words, responses to an attack may differ,

depending on the targeted host, for instance. One drawback of

this model is that it does not learn anything from attack to

attack, so the intelligence level remains the same until the

next upgrade (White et al., 1996; Porras and Neumann, 1997).

2.5.3. Cost-sensitive mapping
This is an interesting technique that attempts to attune

intrusion damage and response cost (Zhang et al., 2011; Mu

and Li, 2010; Toth and Kregel, 2002; Zhang et al., 2009).

Definition 3 (Intrusion Damage Cost). Intrusion damage cost

represents the “amount of damage to an attack target when the IDS

and other protective measures are either unavailable or ineffective

(Wei et al., 2001)”.

The results of a risk assessment are very important, in

terms of minimizing the performance cost of applying strong

responses, as a weak response is enough to mitigate a weak

attack. Some cost-sensitive approaches have been proposed

(e.g., Stakhanova et al., 2007a; Foo et al., 2005; Papadaki and

Furnell, 2006) that use an offline risk assessment compo-

nent, which is calculated by evaluating all the resources in

advance. The value of each resource is static. In contrast,

online risk assessment components can help accurately

measure intrusion damage. The challenge with online risk

assessment is the accuracy of calculating intrusion damage.

In case of inaccurate calculation, the IRSmay select an unduly

high impact response for the network or apply a weaker

response.

Intrusion risk assessment is very important in cost-

sensitive mapping. Many real-time risk assessment models

have been proposed during the last decade. As illustrated in

Fig. 2, the proposed approaches can be grouped into three

main categories:

(i) Attack Graph-based: The attack graphs not only help to

identify attacks, but also to quantitatively analyze their

impact on the critical services in the network, based on

the attackers behavior and vulnerabilities that can be

exploited (Jahnke et al., 2007; Kanoun et al., 2008; Dantu

et al., 2004). The attack graph is a useful model that can

show the attack paths in a network based on service

vulnerabilities (Jha et al., June 2002; Wang et al., 2008). It

not only correlates the intrusion detection system (Noel

http://dx.doi.org/10.1016/j.cose.2014.04.009
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and Jajodia, 2005; Wang et al., 2006) outputs, but also

helps intrusion response systems to apply responses in

a timely fashion, at the right place, and with the

appropriate intensity (Jahnke et al., 2007; Kanoun et al.,

2008). One challenge in this approach is attack

modeling. The correlationmethods proposed in the last

decade to connect attack steps can be classified into

three categories (Kanoun et al., 2007; Totel et al., 2004):

implicit, explicit, and semi-explicit correlations.

The implicit correlation attempts to find similarities be-

tween alerts in order to correlate them. In the explicit

correlation, attack scenarios have to be defined statically.

The attack signatures form the attack graph (Goubault-

Larrec, 2001). The semi-explicit correlation type general-

izes the explicit method by introducing preconditions and

postconditions for each step in the attack graph (Cuppens

and Ortalo, 2000).

(ii) Service Dependency Graph-based: Three properties are

defined for each service: C(S), I(S), and A(S), which

denote the confidentiality, integrity, and availability of

service (S) respectively. The impact of the attack on a

service is propagated to other services based on the type

of dependency. In this type of approach, the attack

graph is not used to evaluate attack cost (Kheir et al.,

2010).

(iii) Non Graph-based: Risk assessment is carried out inde-

pendently of the attack detected by the IDS. This means

that the IDS detects an attack and sends an alert to the

risk assessment component, which performs a risk

analysis based on alert statistics and other information

provided in the alert(s) (Gehani and Kedem, 2004; Mu

et al., 2008; Arnes et al., 2005; Haslum et al., 2008b).

2.6. Applying location

Most IRSs apply responses either on the attacked machine or

the intruders machine if it is accessible. By extracting the

“attack path”, we can identify appropriate locations, those

with the lowest penalty cost, for applying them. Moreover,

responses can be assigned to calculate the dynamic cost

associated with the location type, as discussed in the

“Response cost model” section. The numerous locations and

the variety of responses at each locationwill constitute amore

effective framework for defending a system from attack, as its

behavior will be less predictable. An attack path consists of

four points: 1) the start point, which is the intruder machine;

2) the firewall point, which includes firewalls and routers; 3)

the midpoint, which includes all the intermediary machines

that the intruder exploits (through vulnerabilities) to

compromise the target host; and 4) the end point (the in-

truders target machine). Despite the research advances in the

detection of attack paths (Chen et al., 2007; Zhang et al., 2008;

Savage et al., 2000), this method has rarely been implemented

in actual IDSs or IRSs.

2.7. Deactivation ability

The need to deactivate a response action is not recognized in

themajority of existing automated IRS. The importance of this

need was first suggested in Kanoun et al. (2010). The authors
argue that most responses are temporary actions which have

an intrinsic cost or can even induce side effects on the

monitored system. The question is how and when to deacti-

vate the response. The deactivation of policy-based responses

is not a trivial task.
3. Classification of existing models

3.1. Response cost

Lee et al. (2002) proposed an intrusion response system based

on cost factors. Attack damage and response costs have been

statically defined based on four categories (ROOT, R2L, DoS,

and PROBE). Maximum damage cost is 100 considered for

ROOT category meanwhile minimum damage cost is 2 allo-

cated for PROBE category. Maximum response cost is 60

considered for ROOT category when attack is trying from a

remote host. In contrast, minimum response cost is 5

considered for PROBE category when probing is being done in

a short period of time. In this work there is not any list and

evaluation of responses. The important feature of this work

from response cost view is that response cost has tight rela-

tionship with attack category.

Papadaki and Furnell (2006) proposed a static evaluated

cost response system. To evaluate the characteristics of each

response action, they have proposed the following parame-

ters: counter-effects, stopping power, transparency, efficiency, and

confidence level. Also, the proposed model assesses the static

and dynamic contexts of the attack. A database for analyzing

the static context is needed to manage important character-

istics of an attack, such as targets, applications, vulnerabil-

ities, and so on. In terms of evaluating the dynamic context of

an attack, there are some interesting ideas embodied in the

proposed model. The two main features of this model are: 1)

the ability to easily propose different orders of responses for

different attack scenarios; and 2) the ability to adapt decisions

in response to changes in the environment.

Strasburg et al. (2009) proposed a structured methodology

for evaluating the cost of a response based on three parame-

ters: operational cost (OC), impact of the response on the

system (RSI), and response goodness (RG). The response cost

model is: RC¼ OCþ RSI� RG. OC refers to the cost of setting up

and developing responses. The RSI quantifies the negative

effect of the response on the system resources. RG is defined

based on two concepts: 1) the number of possible intrusions

that the response can potentially address; 2) the amount of

resources that can be protected by applying the response.

Dynamic evaluated response cost approach is firstly pro-

posed in Toth and Kregel (2002). Toth and Kregel (2002) pre-

sented a network model that takes into account relationships

between users and resources, since users perform their ac-

tivities by utilizing the available resources. The goal of a

response model is to keep the system in as high a state of

usability as possible. Each response alternative (which node to

isolate) is inserted temporarily into the network model and a

calculation is performed to determine which response has the

lowest negative impact on services. In this model, every ser-

vice has a static cost, and there is only the “block IP” response

to evaluate as a way to repel an attack. When the IDS detects

http://dx.doi.org/10.1016/j.cose.2014.04.009
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an incoming attack, an algorithmattempts to find the firewall/

gateway that can effectively minimize the penalty cost of the

response action.

3.2. Response time

Tanachaiwiwat et al. (2002) proposed a non-adaptive response

system. Although they claim that their method is adaptive,

they have, in fact, implemented a non-adaptive mechanism.

They point out that verifying the effectiveness of a response is

quite expensive. They check, IDS efficiency, alarm frequency

(per week), and damage cost, in order to select the best

strategy. The alarm frequency reveals the number of alarms

triggered per attack, and damage cost assesses the amount of

damage that could be caused by the attacker. An appropriate

list of response is available in the proposed model.

In (2007a), Stakhanova et al. proposed a proactive IRS. This

model focuses on detecting anomalous behavior in software

systems. It monitors system behaviors in terms of system

calls, and has two levels of classificationmechanism to detect

intrusion. In the first detection step, when both normal and

abnormal patterns are available, the model attempts to

determine what kind of pattern is triggered when sequences

of system calls are monitored. If the sequences do not match

the normal or abnormal patterns, the system relies on ma-

chine learning techniques to establish whether the system is

normal or anomalous. These authors have presented a

response system that is automated, cost-sensitive, preemp-

tive, and adaptive. The response is triggered before the attack

completes.

Haslum et al. (2007) proposed a real time intrusion pre-

vention model. They designed a prediction model based on

the Hidden Markov Model (HMM) to model the interaction

between the intruder and the network (Haslum et al., 2008a).

The proposed HMM is based on four states: Normal, Intrusion

Attempt, Intrusion in progress, and Successful attack. When the

attacker gets appropriate results in attack, systemmoves from

Normal state to the Intrusion attempt state and so on. When the

probability ofNormal state is down, it means the probability of

other states are up. That model can detect the U2R, R2L, and

PROBE categories of attacks, but not the DoS category.

3.3. Adjustment ability

Foo et al. (2005) presented a graph-based approach, called

ADEPTS. The responses for the affected nodes are based on

parameters such as confidence level of attack, previous

measurements of responses in similar cases, etc. Themodel is

adaptive and ADEPTS uses a feedbackmechanism to estimate

the success or failure of an applied response.

Stakhanova et al. (2007a) proposed an adaptive IRS. There

is a mapping between system resources, response actions,

and intrusion patterns which has to be defined in advance.

Whenever a sequence of system calls matches a prefix in an

abnormal graph, the response algorithm decides whether to

repel the attack or not, based on a confidence level threshold.

Multiple candidate responses may be available, and the one

with the least negative effect is selected based on utility the-

ory. The effectiveness of each applied response is measured

for future response selection. If the selected response
succeeds in neutralizing the attack, its success factor is

increased by one, otherwise it is decreased by one.

3.4. Response selection

Chen and Yang (2004) proposed a static-mapping intrusion

detection and prevention system based on firewalls. The idea

is an attack responsematrix whichmaps attack types to some

responses. They do not consider trading off security enforce-

ment levels and system performance.

Curtis and Carver (2001), Carver and Pooch (2000), Carver

et al. (2000) propose a complex dynamic mapping based on

an agent architecture (AAIRS). In AAIRS, multiple IDS monitor

a host and generate alarms. The alarms are first processed by

theMaster Analysis agent. This agent indicates the confidence

level of the attack and passes it on to an Analysis agent, which

then generates a response plan based on degree of suspicion,

attack time, attacker type, attack type, attack implications, response

goal, and policy constraints.

Lee et al. (2002) proposed a cost-sensitive model based on

three factors: 1) operational cost, which refers to the cost of

processing the stream of events by an IDS; 2) damage cost, the

amount of damage to a resource caused by an attacker when

the IDS is ineffective; and 3) response cost, which is the cost of

applying a response when an attack is detected.

Balepin et al. (2003) presented a dynamic cost-sensitive

model and a response cost model. They proposed a local

resource dependency model to evaluate responses. Their

approach considers the current state of the system so as to

calculate the response cost. Each resource has common

response measures associated with the current state. The

authors argue that designing a model to assess the value of

each resource is a difficult task, so they rank the resources by

their importance to produce a cost configuration. Then, static

costs are assigned to high priority resources. Costs are injec-

ted into the resource dependency model when associated re-

sources are involved in an incident. A particular response for a

node is selected based on three criteria: 1) response benefit:

sum of costs of resources that response action restores to a

working state, 2) response cost: sum of costs of resources

which is negatively affected by the response action, and 3)

attack cost: sum of costs of resources that are negatively

affected by the intruder. This approach suffers from multiple

limitations. First, it is not clear how the response benefit is

calculated in terms of confidentiality and integrity. Secondly,

restoring the state of resources alone cannot be used to eval-

uate the response positive effect (Kheir et al., 2010). Finally,

the proposed model is applicable for host-based intrusion

response systems. Its application to network-based intrusion

response requires significant modifications in the cost model

(Kheir et al., 2010).

Mu and Li (2010) presented a hierarchical task network

planning model to repel intrusions. In their approach, every

response has an associated static risk threshold that can be

calculated by its ratio of positive to negative effects. The

permission to run each response is based on the current risk

index of the network. When the risk index is greater than the

response static threshold, the next response is allowed to run.

The authors proposed a response selection window, where

the most effective responses are selected to repel intrusions.

http://dx.doi.org/10.1016/j.cose.2014.04.009
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There is no evaluation of responses in this work. Also, it is

unclear how the positive and negative effects of responses

have been calculated. In that framework, the communication

component is responsible for receiving alerts from multiple

IDSs. The authors proposed to use an intrusion response

planning to find a sequence of actions that achieve a response

goal. These goals are the same as those in Curtis and Carver

(2001): analyze the attack, capture the attack, mask the attack,

maximize confidentiality, maximize integrity, recovery gracefully,

and sustain service. Each goal has its own sequence of re-

sponses. For example, if the goal is to analyze an attack, the

earlier responses in the sequence have to be weak, but later

responses have to be strong.

Zhang et al. (2009) presented an approach for measuring

attack impact with the objective being to suggest rational

response using cost-benefit analysis. The proposed architec-

ture is composed of three components: events processor,

system state estimator, and response actuator. Observable

Markov Decision Process has been used in this model and the

system states were classified into four coarse-grained cate-

gories, namely, normal, probing, under exploitation, and

compromised states. The rational response is chosen by

estimating system states, and taking a rational response. Two

cost functions were defined for rational response policy:

maintenance cost due to intrusion response and failure cost due

to attack. The proposed automated response mechanism can

tune the tradeoff between system maintenance cost and

failure cost for achieving rational defense.

Kheir et al. (2010) proposed a cost-sensitive IRS based on a

service dependency graph to evaluate the confidentiality and

integrity impacts, as well as the availability impact. The au-

thors argue that it is really difficult to identify the impact on

data confidentiality and integrity of other resources when we

apply a response on a resource. To address this problem, the

authors use a specific type of responses (e.g., “allow unsecure

connections”) (Kheir et al., 2009) in case of an openSSL attack.

They targeted specific response that has negative effect on

data confidentiality and integrity.

3.4.1. Cost-sensitive mapping with dynamic risk assessment
Kanoun et al. (2008) presented a risk assessment model based

on attack graphs to evaluate the severity of the total risk of the

monitored system. The LAMBDA (Cuppens and Ortalo, 2000)

language is used to model attack graphs when an attack is

detected. When an attack graph is obtained, the risk gravity

model begins to compute the risk, which is a combination of

two major factors: (i) Potentiality, which measures the proba-

bility of a given scenario taking place and successfully

achieving its objective. Evaluating this factor is based on

calculating its minor factors: natural exposition, and dissuasive

measures. The first of these minor factors measures the nat-

ural exposure of the target system facing the detected attack.

To reduce the probability of an attack progressing, the second

minor factor, dissuasivemeasures, can be enforced. (ii) Impact,

which is defined as a vector with three cells that correspond to

the three fundamental security principles: Availability,

Confidentiality, and Integrity. The interesting point with this

model is that the impact parameters are calculated dynami-

cally. That impact depends on the importance of the target

assets, aswell as the impact of the level of reductionmeasures
deployed on the system to reduce and limit the impact, when

the attack is successful.

Wang et al. (2013) presented a middleware approach to

bridge the gap between system-level vulnerabilities and

organization-level security metrics. The model is fundamen-

tally different from previous methods because it uses de-

pendency attack graphs rather than state-based attack graphs

to represent network observations. The proposed approach

systematically integrates attack graphs and Hidden Markov

Models together for exploring the probabilistic relation be-

tween system observations and states. It then applies a cost-

driven heuristic algorithm to search for the optimal security

hardening from a list of countermeasure candidates. A set of

security metrics and defence cost factors was specified in this

work for calculating attack cost and defense cost. Attack

impact wasmeasured by confidentiality loss, denial of service,

public embarrassment, privilege escalation, and integrity loss,

while defence cost factors was calculated by system down-

time, installation cost, operation cost, training cost, and in-

compatibility cost.

Jahnke et al. (2007) presented a graph-based approach for

modeling the effects of attacks against resources and the ef-

fects of the response measures taken in reaction to those at-

tacks. The proposed approach extends the idea put forward by

Toth and Kregel (2002) by using general, directed graphs

showing dependencies between resources and by deriving

quantitative differences between system states from these

graphs. If we assume that G1 and G2 are the graphs we obtain

before and after the reaction respectively, then calculation of

the responses positive effect is the difference between the

availability plotted in the two graphs: A(G2) � A(G1). Like Toth

and Kregel (2002), Balepin et al. (2003), these authors focus on

the availability impacts.

Kheir et al. (2010) proposed a dependency graph to evaluate

the confidentiality and integrity impacts, as well as the

availability impact. The confidentiality and integrity criteria

are not considered in Jahnke et al. (2007). In Kheir et al. (2010),

the impact propagation process proposed by Jahnke et al. is

extended to include these impacts. Now, each service in the

dependency graph is described with a 3D CIA vector, the

values of which are subsequently updated, either by actively

monitoring estimation or by extrapolation using the de-

pendency graph. In the proposed model, dependencies are

classified as structural or functional dependencies.

In (2005), Årnes et al. presented a non graph-based real-

time risk assessment method for information systems and

networks based on observations from network sensors. The

proposed model is a multi-agent system where each agent

observes objects in a network using sensors. An object is any

kind of asset in the network that is valuable in terms of se-

curity. To perform dynamic risk assessment with this

approach, discrete-time Markov chains are used. For each

object, a Hidden Markov Model (HMM) is considered and the

HMM states illustrate the security state, which changes over

time. The proposed states are: Good, Attacked, and Compro-

mised. The compromised state indicates that the host has been

compromised. Thus, each object in the network can be in a

different state at any time. In their model, it is assumed that

there is no relationship between objects and that the HHMs

work independently. A static cost, Ci, is allocated to each state,
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Table 1 e Classification of existing IRSs based on proposed taxonomy.

IRS Response
selection

Risk
assessment

Manage
false

positive

Response
time

Adjustment
ability

Response
cost

Response
lifetime

DC&A (Fisch, 1996) Dynamic No Delayed Non-adaptive Static Sustainable

CSM (White et al., 1996) Dynamic No Delayed Non-adaptive Static Sustainable

EMERALD (Porras and

Neumann, 1997)

Dynamic No Delayed Non-adaptive Static Sustainable

BMSL-based response

(Bowen et al., 2000)

Static No Delayed Non-adaptive Static Sustainable

SoSMART (Musman and

Flesher, 2000)

Static No Delayed Non-adaptive Static Sustainable

PH (Somayaji and Forrest,

2000)

Static No Delayed Non-adaptive Static Sustainable

Lee’s IRS (Lee et al., 2002) Cost-sensitive Static No Delayed Non-adaptive Static Sustainable

AAIRS (Curtis and Carver,

2001; Carver and Pooch,

2000; Carver et al., 2000;

Ragsdale et al., 2000)

Dynamic No Delayed Adaptive Static

Evaluated

Sustainable

SARA (Lewandowski

et al., 2001)

Dynamic No Delayed Non-adaptive Static Sustainable

CITRA (Schnackenberg

et al., 2001)

Dynamic No Delayed Non-adaptive Static Sustainable

TBAIR (Wang et al., 2001) Dynamic No Delayed Non-adaptive Static Sustainable

Network IRS (Toth and

Kregel, 2002)

Cost-sensitive Static No Delayed Non-adaptive Dynamic Sustainable

Tanachaiwiwat’s IRS

(Tanachaiwiwat

et al., 2002)

Cost-sensitive Static No Delayed Non-adaptive Static Sustainable

Specification-based IRS

(Balepin et al., 2003)

Cost-sensitive Dynamic (SDG)a No Delayed Non-adaptive Dynamic Sustainable

ADEPTS (Foo et al., 2005) Cost-sensitive Static No Proactive Adaptive Static Sustainable

FAIR (Papadaki and Furnell,

2006)

Cost-sensitive Static No Delayed Non-adaptive Static

Evaluated

Sustainable

Stakhanova’s IRS

(Stakhanova et al., 2007a)

Cost-sensitive Static No Proactive Adaptive Static

Evaluated

Sustainable

DIPS (Haslum et al., 2007) Cost-sensitive Dynamic (NG)b No Proactive Non-adaptive Static Sustainable

Jahnke (Jahnke et al., 2007) Cost-sensitive Dynamic (AG)c No Delayed Non-adaptive Dynamic Sustainable

Strasburg’s IRS (Strasburg

et al., 2009)

Cost-sensitive Static No Delayed Adaptive Static

Evaluated

Sustainable

Zhang’s IRS (Zhang

et al., 2009)

Cost-sensitive Dynamic (NG) Yes Delayed Non-adaptive Static Sustainable

IRDM-HTN (Mu and Li, 2010;

Mu et al., 2008)

Cost-sensitive Dynamic (NG) Yes Delayed Non-adaptive Static

Evaluated

Sustainable

OrBAC (Kanoun et al., 2008;

Kanoun et al., 2010)

Cost-sensitive Dynamic (AG) No Proactive Adaptive Static

Evaluated

Deactiveable

Kheir’s IRS (Kheir et al.,

2010; Kheir et al., 2009)

Cost-sensitive Dynamic (SDG) No Proactive Non-adaptive Dynamic Sustainable

Wang’s IRS (Wang

et al., 2013)

Cost-sensitive Dynamic (AG) No Delayed Non-adaptive Dynamic Sustainable

a SDG: Service Dependency Graph-based.
b NG: Non Graph-based.
c AG: Attack Graph-based.
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Si. The total risk for each object at time t can be calculated as:

Rt ¼
Pn

i¼1gtðiÞCðiÞ. The gt(i) value gives the probability that the

object is in state Si at time t.

Gehani and Kedem (2004) presented a non graph-based

real-time risk management model, called RheoStat. This

model dynamically alters the exposure of a host to contain an

intrusion when it occurs. A host’s exposure consists of the

exposure of all its services. To analyze a system’s risk, a

combination of three factors is considered: 1) the likelihood of
occurrence of an attack; 2) the impact on assets, i.e., the loss of

confidentiality, integrity, and availability; and 3) the vulner-

ability’s exposure, which is managed by safeguards.

Haslumet al. (2008b) proposed a fuzzymodel for online risk

assessment in networks. Human experts rely on their expe-

rience and judgment to estimate risk based on a number of

dependent variables. Fuzzy logic is applied to capture and

automate this process. The knowledge of security and risk

experts is embedded in rules for a fuzzy automatic inference

http://dx.doi.org/10.1016/j.cose.2014.04.009
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Table 2 e Comparison of existing online intrusion risk assessment approaches.

IRA Technique used Quantitative Qualitative Hybrid

Balepin et al. (2003) Decision Theory Convention O

Gehani and Kedem (2004) Addition, Multiplication, and Division Operations O

Arnes et al. (2005) Hidden Markov Model O

Papadaki and Furnell (2006) Decision-making O

Jahnke et al. (2007) Attack Graph O

Mu et al. (2008) Dempster-Shafer Theory O

Kanoun et al. (2008) Attack Graph O

Haslum et al. (2008b) Fuzzy Logic O

Kheir et al. (2009) Service Dependency Graph O

Zhang et al. (2009) Decision Theoretic O

Wang et al. (2013) Dependency attack graph O
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system. The main contribution is the use of fuzzy logic con-

trollers. These were developed to quantify the various risks

based on a number of variables derived from the inputs of

various components. The fuzzy model is used to model threat

level, vulnerability effect, and asset value. Threat level (FLC-T) is

modeled using three linguistic variables: Intrusion frequency,

Probability of threat success, and Severity. TheHMMmodule used

for predicting attacks provides an estimate of intrusion fre-

quency. The asset value (FLC-A) is derived from three other

linguistic variables: Cost, Criticality, Sensitivity, and Recovery. In

addition, the vulnerability effect (FLC-V) has been modeled as

a derived variable from Threat Resistance and Threat Capability.

Eventually, the risk is estimated based on the output of the

three fuzzy logic controllers FLC-T, FLC-A, and FLC-V.

Mu et al. (2008) proposed a non graph-based real-time risk

assessment model based on DeS evidence theory. DeS evidence

theory is a method for solving a complex problem where the

evidence is uncertain or incomplete. The proposed model

consists of two steps, which identify: Risk Index and Risk Dis-

tribution. In the first step, the risk index has to be calculated.

The risk index is the probability that a malicious activity is a

true attack and can achieve its mission successfully. In DeS

evidence theory, five factors are used to calculate the risk

index: Number of alerts, Alert Confidence, Alert Type, Alert

Severity, and Alert Relevance Score. Risk distribution is the real

evaluation of risk with respect to the value of the target host,

and can be low, medium, or high. The risk distribution has two

inputs: the risk index, and the value of the target host. The

latter depends on all the services it provides.

3.5. Deactivation ability

The importance of deactivation ability in IRS was first sug-

gested in Kanoun et al. (2010). Kanoun et al. specified two

associated event-based contexts for each response: Start

(response context), and End (response context). The risk assess-

ment component can also help decide when a countermea-

sure has to be deactivated. In Kanoun et al. (2010),

countermeasures are classified into one of two categories, in

terms of their lifetime: 1) One-shot countermeasures, which

have an effective lifetime that is negligible. When a response

in this category is launched, it is automatically deactivated;

and 2) Sustainable countermeasures, which remain active to

deal with future threats after a response in this category is

applied.
4. Discussion

A list of research studies on intrusion response systems and

intrusion risk assessment systems in the last two decades is

given in Table 1. As we can see, the cost-sensitive approaches

have been the common paradigm for designing IRSs. Intrusion

risk assessment mechanism is very important in cost-

sensitive mapping. As seen in Table 1, recent proposed ap-

proaches use either attack graph-based (Jahnke et al., 2007;

Kanoun et al., 2010) or service dependency graph-based

(Kheir et al., 2010) methods to calculate multi-step attack

costs online. We propose to use a combination of both to

compute the damage cost and accurately react to attacks. In

fact, when we use the attack graph approach for calculating

risk, we do not have any knowledge about the true value of the

compromised service, nor do we know the real impact of an

attacker gaining full access to a compromised service based

on predefined service permissions. In contrast, when we use

the second method to calculate the risk separately, we do not

have any information about the intruder’s knowledge level.

Therefore, an accurate attack cost is obtained based on in-

formation provided by service dependency and attack graphs.

Eventually, the response selection module applies a response

in which the attack and response costs are in proportion. Risk

assessment methodologies are classified into three main

categories: Quantitative, Qualitative, and Hybrid. Table 2 com-

pares the online intrusion risk assessment approaches dis-

cussed in this paper (listed in Table 1).

As we can see from the table, the most common ap-

proaches used for online mode is the quantitative approach.

Quantitative approaches rely on hard numbers, complex cal-

culations, probability theory and statistics to determine the

risk exposure and they may be difficult for non-technical

people to interpret (Hulitt and Vaughn, 2010; Lo and Chen,

2012).

Qualitative approaches use classes and relative values to

show the impact and probability of a particular scenario

(Ekelhart et al., 2007). They also assess information security

risks by employing methods and principles with non-

numerical levels. The result of qualitative approaches is

vastly dependent on the security experts who conduct the risk

analysis (Hulitt and Vaughn, 2010; Karabacak and Sogukpinar,

2005). To address the weaknesses of both methodologies,

some models have been proposed (e.g. Mu et al., 2008) to

http://dx.doi.org/10.1016/j.cose.2014.04.009
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combine the best of both worlds into a unique hybrid

approach.

Many IRS models choose responses according to raw IDS

alerts. Thismay lead to false positive responses because of the

high IDS false positive alert rate (Lee et al., 2006; Spathoulas

and Katsikas, 2010; Lin et al., 2013). Unfortunately, there

have not beenmany studies that address the tolerance of IRSs

to false positive IDS alerts. Mu and Li (2010), Zhang et al. (2009)

proposed a model to control false positives in IRS. Mu and Li

(2010) defined a risk threshold for each countermeasure

where an online risk assessment module measures the alert

risk. Since the risk value for a false positive is not high, it

cannot reach the countermeasure risk threshold. Zhang et al.

(2009) proposed an alert correlation mechanism to combine

the low-level alerts of a group of IDS sensors into one obser-

vation vector and treating them as a whole.

In addition, as discussed in the paper, the adjustment

ability of IRS is an important factor that influences the

strength of the responses against attack over time. As we see

in Table 1, only five IRS out of twenty five supports adjustment

ability (Stakhanova et al., 2007a; Kanoun et al., 2010; Mu and

Li, 2010; Curtis and Carver, 2001; Foo et al., 2005). The

response goodness (RG) concept plays a critical role in the

adaptive approach that was introduced by Stakhanova et al.,

(2007a) and Foo et al. (2005). This parameter shows the his-

tory of each response (success or failure) in the past to miti-

gate an attack. One way to measure the success or failure of a

response is to use the result of the online risk assessment

component. RG can be calculated as proposed by Stakhanova

et al. in (2007a): if the selected response succeeds in neutral-

izing the attack, its success factor (Rs) is increased by one,

otherwise, its failure factor (Rf) is increased. Unfortunately,

the current solutions to calculate response goodness do not

consider the time factor. A point of interest is that the most

recent results must be considered more valuable than the

earlier ones. For example, assume the results of Rs and Rf for a

response are 10 and 3 respectively, the most recent result

being: {F, F, F}. If we calculate the response goodness based on

Algorithm 1 (line 3), RG is equal to 0.54. Unfortunately,

although RG ¼ 0.54 indicates that this response is a good one,

and it was appropriate formitigating the attack, over time and

with the occurrence of new attacks, this response becomes

insufficient to stage a counter attack.

Response cost evaluation is an important part of an IRS. As

we can see in Table 1, the majority of the proposed IRSs use

Static Cost or Static Evaluated Costmodels (Strasburg et al., 2009;

Stakhanova et al., 2007a; Kanoun et al., 2010; Mu and Li, 2010;

Lee et al., 2002; Haslum et al., 2007; Curtis and Carver, 2001;

White et al., 1996; Porras and Neumann, 1997; Fisch, 1996;

Bowen et al., 2000; Musman and Flesher, 2000; Somayaji and

Forrest, 2000; Carver and Pooch, 2000; Carver et al., 2000;

Ragsdale et al., 2000; Lewandowski et al., 2001;

Schnackenberg et al., 2001; Wang et al., 2001; Tanachaiwiwat

et al., 2002; Foo et al., 2005; Papadaki and Furnell, 2006). Only

five dynamic evaluated cost models have been used (Jahnke

et al., 2007; Toth and Kregel, 2002; Kheir et al., 2010; Balepin

et al., 2003; Wang et al., 2013). Considering service de-

pendencies model to calculate response cost in IRS, firstly

proposed by Toth and Kregel (2002). This approach suffers

multiple limitations. First, they did not consider positive effect
of responses. Evaluation of responses without considering

positive effect leads to inaccurate evaluation. For example, if

negative impact of response A is greater than response B, this

does not mean that response B has to be applied first. Maybe,

the positive effect of response A is better that B and if we

calculate the response effectiveness, overall, response A is

better. Second, from the security perspective (CIA), there exist

no evaluation in terms of data confidentiality and integrity.

Eventually, in the proposedmodel only the “block IP” response

has been considered. In other words, it tries to decrease the

availability of the target resource completely.

Similar to Toth and Kregel (2002), Balepin et al. (2003) pre-

sented a local resource dependency model to evaluate

response in case of attack. Unlike (Toth and Kregel, 2002), this

model considers the positive effects of responses. However,

the authors’ approach suffers from multiple limitations. First,

it is not clear how response benefit is calculated in terms of

confidentiality and integrity. Second, restoring the state of a

resource cannot be only measured to evaluate the response

positive effect as suggested by the authors. Note to mention

that the proposed model is applicable to host-based intrusion

response system only. To apply it to network-based intrusion

response, it requires significant modifications to the cost

model (Kheir, 2010).

Jahnke et al. (2007) proposed a graph-based approach for

modeling the effects of attacks against resources and the ef-

fects of the response measures taken in reaction to those at-

tacks. Kheir et al. (2010) proposed a dependency graph to

evaluate the confidentiality and integrity impacts, as well as

the availability impact. The confidentiality and integrity

criteria are not considered in Jahnke et al. (2007). In Kheir et al.

(2010), the impact propagation process proposed by Jahnke

et al. is extended to include these impacts. To address this

issue, the authors use a specific type of responses (e.g., “allow

unsecure connections”) (Kheir et al., 2009) in case of an openSSL

attack. They targeted a specific response that has negative

effect on data confidentiality and integrity.

The response selection mechanism in Dynamic or Cost-

sensitive mapping approaches can be done with a dynamic or

static response list. In a dynamic response list, there are two

approaches for the response ordering mechanism. The first

approach is to order responses based on response cost (Rcost).

As explained in this paper, response cost can be: Static cost

ðRs
costÞ, Static evaluated cost ðRse

costÞ, or Dynamic evaluated cost

ðRde
costÞ. If we chose the Dynamic evaluated cost model, our

response list will be dynamic automatically. If the response

cost be static (Static cost or Static evaluated cost), the sorted list

of responses will remain static throughout an attack, and so it

may be predictable by an intruder. One idea to convert a static

response list to dynamic one is using Goodness factor, as

illustrated in Eq. (2). We update the response effectiveness (RE)

by multiplying response cost by Goodness factor.

REðtÞ ¼ Rsjse
cost � RGðtÞ (2)

Even though a strong responsemay not be at the top of the

ordered list whenwe initialize the response system, RG being a

dynamic factor causes it to move to that position over time.

The higher the Goodness factor, the higher the response places

in the ordered list over time. One drawback to using RG is that

http://dx.doi.org/10.1016/j.cose.2014.04.009
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Table 3 e Attack and response costs parameters in Cost-sensitive approaches.

IRS Attack cost parameter Response cost parameter

Lee’s IRS (Lee et al., 2002) Attack type Operational cost

Network IRS (Toth and Kregel, 2002) N/A Availability loss

Tanachaiwiwat’s IRS (Tanachaiwiwat et al., 2002) Monetary loss for each attack type Monetary loss for each response type

Specification-based IRS (Balepin et al., 2003) Availability loss Availability loss, Availability gain

ADEPTS (Foo et al., 2005) Alert confidence Response goodness

FAIR (Papadaki and Furnell, 2006) Alarm confidence, Perpetrator threat,

Overall threat, Urgency, Number of

systems at risk, Memory usage at target,

CPU usage at target, Target idle?, Critical

applications running?, Critical files open?,

Other applications running?,

Auditing software running?

Counter-effects, Stopping power,

Transparency, Efficiency, Confidence

Stakhanova’s IRS (Stakhanova et al.,

2007a; Stakhanova, 2007)

N/A Availability loss, Integrity loss,

Confidentiality loss, System performance,

Man-hours, Additional storage

DIPS (Haslum et al., 2007) Intrusion frequency, Probability for

threat success, Threat severity,

Threat resistance, Threat capability,

Asset cost, Asset criticality, Asset

sensitivity, Asset recovery

N/A

Jahnke (Jahnke et al., 2007) N/A Availability loss

Strasburg’s IRS (Strasburg et al., 2009) Confidentiality loss, Integrity loss,

Availability loss

Operational cost, Response goodness,

Availability loss

Zhang’s IRS (Zhang et al., 2009) Confidentiality loss, Integrity loss,

Availability loss

Maintenance cost

IRDM-HTN (Mu et al., 2008; Mu and Li, 2010) Alert amount, Alert confidence, Alert type

number, Alert severity, Alert relevance score

N/A

OrBAC (Kanoun et al., 2008; Kanoun et al., 2010) Success Likelihood, History, Logging,

Warning, Jurisdiction, Backup_Exist,

Third_Party, Confidentiality loss,

Integrity loss, Availability loss

Backup_Exist, Third_Party,

Confidentiality loss, Integrity loss,

Availability loss

Kheir’s IRS (Kheir et al., 2010; Kheir et al., 2009) Confidentiality loss, Integrity loss,

Availability loss

Confidentiality loss, Integrity loss,

Availability loss

Wang’s IRS (Wang et al., 2013) Confidentiality loss, Denial of service,

Public embarrassment, Privilege escalation,

Integrity loss

System downtime, Installation cost,

Operation cost, Training cost,

Incompatibility cost
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it blocks the response selection mechanism after a while.

Since a strong response is better to repel an attack, itsGoodness

attribute increases all the time. If we sort the responses based

on RG, we will be selecting the strong response all the time

after a while, which is not desirable. Another drawback is that

Quality of Service (QoS) in the network is not considered.

Because many services are available and accessed by large

numbers of users, it is important to maintain the users’ QoS,

the response time of applications, and the critical services

that are in high demand. Since, when we use RG, the strongest

response is selected in case of attack, we are restricting

network functionality until the response is deactivated.

The second approach thatwe propose for future research is

not to consider RG in the response ordering mechanism, and

instead, to start with a poor response. It does not matter if a

poor response is applied, because in this case the current

network risk level slips under the risk threshold, based on the

response Goodness, and brings us very close to the risk

threshold again. If the attack is in progress, the network risk

passes the risk threshold again very quickly and response

system applies the next response. This approach has two

main benefits. The first one is that all non-optimal responses

will be reconsidered, and one or more of them may be able to
prevent the attack this time. So, even if one of the responses

applied previously was inefficient, it may work for a new

attack. The second is that user’s needs are considered in terms

of QoS. So, in this approach, we start with a poor response,

and, when the attack is likely to prove dangerous for our

network, stronger responses are applied and network func-

tionality is reduced slowly.

In the cost-sensitive approach, attack and response costs

are attuned. Table 3 illustrates the parameters that are defined

in the surveyed cost-sensitive approaches (discussed in Table

1) to measure these two costs. The common way to calculate

attack cost is by assessing the attack’s impact on CIA (Confi-

dentiality, Integrity, and Availability) (Strasburg et al., 2009;

Kheir et al., 2010; Kheir et al., 2009; Zhang et al., 2009).

Response cost, on the other hand, is only assessed by

measuring the impact of the response on resource availability

(Toth and Kregel, 2002; Balepin et al., 2003; Stakhanova, 2007).

This makes it difficult to compare attack cost to response cost

since they impact different security attributes. In other words,

they do not use the samemeasurement unit. There have been

a few studies that aim to reconcile themeasurement unit used

to measure response cost with the one used for attack cost.

For example, Kheir et al. (2010), Kheir et al. (2009) proposed a

http://dx.doi.org/10.1016/j.cose.2014.04.009
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model that system under attack with strong protocol like

httpsmoves to another state that allows users to use unsecure

protocol like http. The activation of unsecure protocol in-

creases an attacker’s ability to beat the system. Thus, this type

of response affects not only on our critical resource avail-

ability but also on data confidentiality and integrity.

Balepin et al. (2003) attempted to put these two costs in the

same measurement unit by simplifying the problem. For the

attack cost, they considered the sum of costs of resources that

are negatively affected by the intruder (availability loss). For

the response cost, they considered not only negative effect of

the response on services but also the sum of costs of resources

to restore the system to a working state (availability gain).

In some models (Stakhanova et al., 2007a; Jahnke et al.,

2007; Toth and Kregel, 2002), only the response cost is

considered. For example, Toth and Kregel (2002) and Jahnke

et al. (2007) applied different responses to a model to under-

stand which one has the lowest negative effect on services. In

contrast, in some other models (Mu et al., 2008; Mu and Li,

2010; Haslum et al., 2007), only the attack cost is calculated

and the response cost has a static value. Haslum et al. (2007)

classified attack cost parameters into three categories: asset

value, vulnerability effect, and threat impact. Asset value was

modeled as cost, criticality, sensitivity, and recovery. Vulnera-

bility effect was measured by two criteria: threat resistance and

threat capability. Threat impact was modeled as the frequency

of attacks, the probability that an intruder succeeds to subvert

security controls, and the severity of attacks. Usually asset

value and vulnerability effect are calculated statically. Threat

effect can be measured dynamically based on IDS results. Mu

et al. (2008), Mu and Li (2010), calculated the attack cost by alert

amount, confidence, type, severity, and relevance score. The attack

cost results is in range of [0, 1]. A list of responses are

distributed in a range of [0, 1] based on their static power cost.

The online risk assessment component calculates the current

risk, which is the sum of the previous and new risk costs.

When the current risk reaches the first response cost

threshold (the weakest response), the first response it is then

applied to mitigate the attack. When this response could not

stop the attacker, the current risk cost will reach to the next

response cost and this strategy guaranties the balance be-

tween response and attack costs. The major weakness of this

model is that the response effectiveness remains same during

the attack period and does not use the response history to

order responses.

There exist othermodels that evaluate attack and response

costs but without putting them in the samemeasurement unit

(e.g. Strasburg et al., 2009; Stakhanova et al., 2007a; Zhang

et al., 2009; Wang et al., 2013; Stakhanova, 2007). These

defined different parameters to calculate costs separately and

then defined some techniques to compare them. For example,

in (2007), Stakhanova et al. proposed more parameters to

evaluate response in addition to CIA such as the Man-hours of

labor required to deploy or manage the response, additional

resources used to support a response, such as disk-space for

additional logging.

Another observation that emerged from this study is

almost all security studies are validated by applying them to

old datasets (MIT Lincoln Laboratory, 2000; Uni of California,

1999). Their accuracy and ability to reflect real-world
conditions is a major concern was argued by Davis et al., in

(2011). Also, many datasets are internal and cannot be shared

due to privacy issues, others are heavily anonymized, or they

lack certain statistical characteristics. These shortcomings are

important reasons why a perfect dataset has yet to exist

(Shiravi et al., 2012). In order to better test and optimize the

selection of these parameters, and compare with other IRS

systems, it is necessary to start working towards building a

large dataset of recent attacks. This dataset of attacks would

need to be executable and should include the attacks, moni-

toring information, and system configuration (software

packages, data, configuration, etc.), a major undertaking for

any single research group. The main suggestion for future

research on the development of IRS is to prepare a strong, real

dataset of single and multi-step attacks. Such a dataset is

needed by all security researchers and will be useful for

testing the efficiency and scalability aspects of the intrusion

response systems in real-time in large environments. Shiravi

et al. (2012) proposed a set of guidelines to how to create

valid datasets, which can be followed to create the new

datasets.
5. Conclusion

The paper surveys existing techniques and tools for Intrusion

Risk Assessment and Intrusion Response Systems. The main

findings of this paper are, that despite two decades of research

in the area, existing approaches suffer from serious limita-

tions. First the online risk assessment component is not

tightly integrated and attuned with the response system. As

we discussed earlier, perfect coordination between the risk

assessment mechanism and the response system leads to an

efficient framework that is able to manage false positive and

select appropriate response in which to be attuned to attack

cost.

We also found that most adaptive IRSs do not support

effective algorithms for updating response history over time.

Many studies claim to achieve this but the review of the

literature shows that they only support very basic mecha-

nisms. For example, they do not consider time in their

calculation of response goodness. Not considering time cau-

ses these technique to overlook the most recent results while

they must be considered more valuable than earlier ones.

Moreover, it is not clear how most studies measure response

goodness (success or failure).

Another important limitation of existing studies lies in the

assessment method used to evaluate the effectiveness of the

approach. Most researchers only consider true positives (i.e.,

the number of correct responses). While true positive is an

indication of accuracy, it only draws a partial picture. False

positive must also be taken into account. It is important to

know how responses for IRSs and risks for IRA have been

wrongly identified.

In addition, most IRSs focus only on response activation.

They do not consider response deactivation, which can take

into account users needs in terms of quality of service. Finally,

most attack graph methods look at the generation of complex

attack graphs and the complexity of analyzing these large

attack graphs. There has been little attention paid to real live
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implementations for calculating damage costs. The response

selection is also ineffective unless the attack context is taken

into account, which is not the case is most studies.

We believe that these limitations are themain reasons that

prevent these techniques from finding their place in com-

mercial tools. To build on existing work, we propose, in this

paper, to conduct further research in the following areas: 1)

Adaptive IRS, 2) Attack context-aware response selection

mechanism in IRS, 3) Dynamic response cost evaluation

framework for IRS that meet network demands, 4) Elastic IRSs

that consider response activation and deactivation by

considering the rate of attack or network risk tolerance, and 5)

Building dataset of single and multi-step attacks. Such a

dataset is needed by all security researchers andwill be useful

for testing the IRSs and IRAs approaches.
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