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Abstract—In this paper, we first investigate the nonnegative
block value decomposition (NBVD) approach through graph-based
representation for clustering called G-NBVD. Then, we propose
our three-step graph and sparse-based robust NBVD (GSR-NBVD)
via robust NBVD (R-NBVD) framework. The robustness to outliers
is obtained by converting the Frobenius norm of error function to
the �2 ,1 -norm for NBVD structure that compensates the effect of
samples that are not conforming to NBVD. To exploit the connec-
tion between the learning matrix and its corresponding coefficients
through sparse representation, we enforce the sparse constraints
on the middle matrix in the R-NBVD framework called SR-NBVD.
To enhance the geometrical information from data space to the
new space, we add a term to our objective minimization func-
tion through a regularized graph representation compact form
called GSR-NBVD. Then, we prove the convergence of our pro-
posed methods and show a visualization of the effectiveness of
G-NBVD and GSR-NBVD step-by-step. Finally, we evaluate our
proposed clustering methods over different kinds of data sets. The
experimental results confirm that our methods outperforms several
state-of-the-art methods through different metrics.

Index Terms—Clustering, graph regularizer, sparse, robustness,
�2 ,1 -norm, nonnegative matrix factorization (NMF), nonnegative
block value decomposition (NBVD).

I. INTRODUCTION

C LUSTERING is one of the most powerful technique in
data mining for grouping set of objects into different

groups through some similarity measures. Clustering methods
can be divided into two groups: hard and soft. While in a hard
clustering method (e.g. K-means) a sample is associated to only
one cluster, soft clustering methods such as Nonnegative Matrix
Factorization (NMF) [1]–[3] associate a sample to more than one
cluster with values that show the degree of association to those
clusters. On the other hand, there are four common categories
for subspace clustering which is an extension of traditional clus-
tering (e.g., principal component analysis (PCA) [4]) that seeks
to find clusters in different subspaces within a dataset [5], [6].
They include algebraic algorithms such as matrix factorization-
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based methods and generalized PCA [7], [8], iterative methods
(e.g., K-planes [9] and K-means projective clustering [10]), sta-
tistical methods [11], [12] and spectral-based framework such
as spectral curvature clustering (SCC) [13], sparse subspace
clustering (SSC) [14], [15] and low-rank representation (LRR)
based clustering method [16], [17].

NMF framework is initially proposed to obtain a part-based
representation of data with non-negativity constraints [2]. These
constraints have some physical interpretations (e.g. presence and
absence of object) [2], [18]. To solve an NMF-based problem,
multiplicative updating (MU) rules have been proposed using
Euclidean (Frobenius-norm) and/or Kullback Leibler (KL) di-
vergence [2], [3]. Also, variants of NMF are proposed for various
applications in image processing [19]–[21], biological data and
document analysis [22]–[27]. These improvements are made
by enforcing extra constraints to the objective function such as
sparseness [22], [23], [28], smoothness [20], [27], robustness
[29]–[31] and Graph regularizations [32], [33]. Indeed, sparse-
based constraints is used vastly as an intrinsic property of given
data in order to reduce the search space [15], [23], [28]. Graph
regularization constraint is used to model the data sample space
as a submanifold [33]. Robust NMF (RNMF) is proposed by
adding additional term under sparse constraint in [34] and later,
by changing the Frobenius norm of errors to �2,1-norm in [29]
in order to mitigate the effect of outliers.

Although the clustering methods such as K-means and 2-
factor NMF-based clustering methods [2], [18], [32], [33] ex-
ploit the relation between samples or variables separately, co-
clustering or bi-clustering methods [35]–[38] utilize the inter
relation between samples and variables (features) to group data
of rows (data instance) and columns (feature) simultaneously
and to find which group of columns maximally corresponds to
which group of rows [36], [37]. Hence, we may consider co-
clustering structure as a kind of subspace clustering approach
which localizes the search in a low-dimension subspace (i.e.,
different subspace rather than the original data space) in order
to find clusters in multiple, possibly overlapping subspaces.

In recent years, different co-clustering methods have been
proposed. A co-clustering algorithm through the information
theory is proposed in [36]. Then, a method of co-clustering via
non-negativity constraints called Block Value Decomposition
(NBVD) is proposed in [35]. Later, a non-negative matrix tri-
factorization (NMTF) as a 3-factor NMF is proposed in [39]
and [40] which considers the orthogonality constraints on both
bases and coefficients matrices. The main difference between
these two methods is that the updating rules in the latter are

1932-4553 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9769-658X
https://orcid.org/0000-0003-4393-0753
https://orcid.org/0000-0002-5246-7265
mailto:yaser.esmaeili@gmail.com
mailto:yaser.esmaeili@gmail.com
mailto:ehsan.arabnejad@gmail.com
mailto:mohamed.cheriet@etsmtl.ca


1562 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 12, NO. 6, DECEMBER 2018

obtained thorough stiefel manifold. A robust tri-factorization
using sparse constraints is proposed in [41] for the cancer ge-
nomics application. The robustness to outliers is obtained by
adding a term with sparsity constraints in objective function
that compensate the effect of samples that are not conforming
to NMTF.

Although tri-factorization approach [39], [40] seems to be
more appropriate for clustering, because of using orthogonal-
ity constraints over bases (first) and coefficient (third) matrices
simultaneously, the results in [40] show that NBVD structure
performs close or better than tri-factorization methods. Further-
more, we observed that (from extensive simulation results) the
NBVD structure is more suitable than NMTF method for our
proposed framework since the former has less constrains over
the matrices.

Motivated by the above discussions and observations, we first
elaborate NBVD framework through the geometrical informa-
tion of the data space via the nearest neighbor graph structure,
called G-NBVD. Then, we introduce a new NBVD objective
function along with the graph-based compact matrix and solve
its corresponding minimization problem through multiplicative
updating rules [3]. Indeed, the graph representation could expose
the covered semantics through the intrinsic geometric structure
of data similar to GNMF algorithm [33] but with more degree
of freedom for three-factorized matrices in our proposed graph-
based NBVD framework. In fact, the GNMF method clusters
the data through the similarities along the features but the pro-
posed G-NBVD clusters the data by considering the relations
between the data samples and features.

Beyond the above described co-clustering approaches, a rad-
ically different way to investigate a robust structure to deal with
the outliers has not been studied deeply to the best of our knowl-
edge. This direction has been investigated in some details for
NMF-based clustering method, e.g. [29], [34]. Thus, to have a
further improvement for clustering and to mitigate the outliers,
we propose a robust NBVD framework, called R-NBVD. To
achieve the robustness, we employ the �2,1-norm for the penalty
function where the large errors (due to outliers) do not dominate
the objective function.

To solve its corresponding minimization problem for R-
NBVD, we use multiplicative updating rules to calculate the
three involved matrices. Then, we prove the convergence of our
proposed R-NBVD method. In addition to robustness, the sparse
representation via the connector matrix (the middle matrix) so-
called block value matrix [35] for a tri-factorization or NBVD
framework has not been considered yet. Indeed, we impose the
� 1

2
-norm constraint [19], [21] on the connection (middle) ma-

trix and we propose the sparse-based robust NBVD called SR-
NBVD. The convergence of our proposed SR-NBVD method is
also proved. Motivated by these two main achievements (robust-
ness and sparseness), we will consider aforementioned graph-
based representation matrix which boost the clustering results.
Hence, in the final stage, we add the graph regularization con-
straints to SR-NBVD model in order to investigate the impact
of using the geometric structure of data and propose a joint
graph and SR-NBVD framework called GSR-NBVD. Then, we
determine the updating rules for matrices and show the proof

of convergence for GSR-NBVD. Furthermore, we visualize the
improvements of our proposed methods for clustering using a
simple data set in each stage.

The main contributions of the current work are summarized
as follows:

� We present a novel graph regularization-based NBVD
framework (GNBVD) which considers the geometric
structure information contained in both data points and
features simultaneously as a co-clustering approach.

� We also propose a robust graph-based NBVD by convert-
ing the Frobenius norm of errors to the �2,1-norm under the
sparse constraint of the middle matrix of three-factorized
matrices (GSR-NBVD) in which improves the clustering
results.

� We develop multiplicative updating rules to solve the cor-
responding optimization schemes of proposed G-NBVD
and GSR-NBVD methods, and provide the convergence
proofs of two minimization problems.

The remainder of the paper is organized as follows. In
Section II, NMF and its variants are reviewed. The NBVD ap-
proach is briefly introduced in Section II. Then, we present
our clustering methods in Section III including G-NBVD and
GSR-NBD through three main steps: robust NBVD, sparse R-
NBVD and graph SR-NBVD. We evaluate our proposed meth-
ods over different types of real-world data sets and compare
their results with several state-of-the-art methods in Section IV.
Section V concludes the paper and suggests paths for future
plan/research.

II. NNMFS: NONNEGATIVE MATRIX FACTORIZATIONS

In this section, we first review the NMF based family methods
and their solutions through the multiplicative updating rules
approach. Then, the NBVD method is reviewed.

A. NMF and Its Variants

We start by reviewing the nonnegative matrix factorization
(NMF) [2]. The goal is to decompose a given data matrix
X ∈ RL×P into two nonnegative matrices U ∈ RL×K

+ and
V ∈ RP ×K

+ such that X ≈ UVT . The NMF problem is de-
fined by

PN M F : min
U≥0,V≥0

||X−UVT ||2F (1)

where ||.||F denotes the Frobenius norm. The multiplicative
updating rules has been proposed to solve (1) as follows [3]

U← U. ∗XV./UVT V (2)

V← V. ∗XT U./VUT U (3)

where .∗ and ./ are the element-wise matrix multiplication and
division, respectively. It can be shown that the objective function
of PN M F in (1) is nonincreasing under the update rules in (2)
and (3) [3].

To consider the sparse property of the coefficient matrix V,
the �0-norm regularizer term might be added to the objective
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function in (1) as follows

PSN M F : min
U≥0,V≥0

||X−UVT ||2F + λs ||V||0 (4)

where λs > 0 is the Lagrangian (regularizer) parameter and
||.||0 is the �0-norm function defined by finding the number
of non-zero components of its given vector. Since the �0-norm
problem is NP-hard because of the combinatorial exhaustive
search of its solution, various approximations such as �p -norm
(0 < p ≤ 1) variants (e.g., �1-norm [28] and �1/2-norm [19])
and arctan function [20] were proposed to tackle this problem.
For instance, several sparsity constrained NMF methods have
been proposed for the application of hyperspectral unmixing
[19], [21], [32] and use the following �1/2-norm term in their
objective functions

min
U≥0,V≥0

1
2
||X−UVT ||2F + λs ||V|| 1

2
, (5)

where the �1/2-norm is defined as

||Z|| 1
2

=
∑

i

∑

j

|zij | 12 , (6)

with the appropriate dimensions of matrix Z. Using the multi-
plicative updating rules, the values of U is updated similar to
(2) and the value of V is updated as follows

V← V. ∗XT U./

(
VUT U +

λs

2
V−

1
2

)
(7)

where [·]− 1
2 is the power of − 1

2 element-wisely. In [19], it has
been shown that the objective function in (5) is nonincreasing
under the update rules in (2) and (7).

In addition to the sparse properties of coefficients matrix for
the clustering purpose, the intrinsic geometric structure of data
is also helpful for data clustering. Hence, the Graph Regularized
Non-negative Matrix Factorization (GNMF) [33] is proposed as
the following problem

PGN M F : min
U≥0,V≥0

||X−UVT ||2F + λg Tr(VT BV) (8)

where λg > 0 is the graph regularizer parameter, Tr(.) denotes
the trace of a matrix, B = A−W is the graph Laplacian matrix
with the weighting matrix W (i.e. binary, heat kernel, or dot-
product, see [33] for more details) and the diagonal matrix A
whose entries are column (or row) sums of W, Aij =

∑
l Wj l .

Again, using the multiplicative updating rules, the values of U
is updated similar to (2) and V is updated as follows

V← V. ∗ (XT U + λgWV)./(VUT U + λgAV) (9)

One can prove that the objective function of PGN M F in (8) is
nonincreasing under the update rules in (2) and (9) [33].

To mitigate outliers and noises in an appropriate model, the
following robust �2,1-norm approach is proposed in [29]

PRN M F : min
U≥0,V≥0

||X−UVT ||2,1 (10)

where �2,1-norm of a matrix Z is defined as

||Z||2,1 =
P∑

i=1

||zi || =
P∑

i=1

√√√√
L∑

j=1

Z2
j i (11)

To solve the robust NMF problem in (10), the following multi-
plicative updating rules is proposed in [29]

U← U. ∗XD̂V./UVT D̂V (12)

V← V. ∗ D̂X
T
U./D̂VU

T
U (13)

where the diagonal matrix D̂ is defined with the following di-
agonal elements for i ∈ {1, . . . , P} :

D̂ii =
1

||xi −UvT
i ||

=
1√∑L

j=1(X−UVT )2
j i

(14)

It can be shown that the objective function of PRN M F in (10)
is nonincreasing under the update rules in (12) and (13) [29].
The convergence theorems as well as their supporting lemmas
are given in [29] for more details.

B. NBVD: Non-Negative Block Value Decomposition

Let X ∈ RL×P , U ∈ RL×K
+ , S ∈ RK×N

+ and V ∈ RP ×N
+ .

Then, the NBVD problem [35] is defined as follows

PN BV D : min
U≥0,S≥0,V≥0

||X−USVT ||2F (15)

The following updating rules are introduced in [35] to solve
PN BV D in (15)

U← U. ∗XVST ./USVT VST (16)

S← S. ∗UT XV./UT USVT V (17)

V← V. ∗XT US./VST UT US (18)

It has been proved that the objective function of PN BV D in
(15) is nonincreasing under the update rules in (16), (17) and
(18) [35] where the steps of theorem for finding local minimizer
of (15) is also given in [35].

III. G-NBVD AND GSR-NBVD: OUR PROPOSED METHODS

FOR CLUSTERING

Motivated by NBVD framework (in spite of tri-factorization
[39], [40] that the orthogonality constraints are imposed for the
learning and coefficient matrices), we first propose a graph based
NBVD method in Section III-A which improves significantly the
clustering results of NBVD [35].

To further improve the clustering results for G-NBVD,
we propose our regularized graph SR-NBVD through three
main steps: i) robust NBVD through the �2,1-norm model in
Section III-B1 ii) sparse R-NBVD which adds the sparseness
of the middle matrix in Section III-B2 iii) regularized graph
SR-NBVD in Section III-B3.
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Algorithm 1: Pseudocode of the Graph Based Nonnegative
Block Value Decomposition (G-NBVD) Algorithm.

Input: data matrix X and parameters λg , ε, Imax .
- Initialize matrices U,S and V.
Repeat:
- Compute Cold = C(X,U,S,V) using the objective

function in (19).
- Update U using (16).
- Update S using (17).
- Update V using (20).
- Compute Cnew = C(X,U,S,V) using the objective

function in (19).
- Stop if either |Cnew - Cold |/Cold < ε or the iteration

number exceeds Imax .
Output: The feature matrix U, the coefficient matrix V

and matrix S.

A. G-NBVD: Graph Based NBVD Method

Inspired by GNMF clustering approach [33] which ampli-
fies the clustering results via the intrinsic geometric properties
of data in comparison with other NMF-based family clustering
methods, we first investigate this property over NBVD frame-
work. In a data representation through the graph-based matrix
factorization, we can model the local similarity of data points
using a nearest neighbor graph over data samples. It is based on
the fact that if two data points are neighbors in original space,
this relation should also be preserved by NMF in the projected
space. We can use the nearest neighbors for each data sample
(which we can consider each sample as a vertex of a graph) in
order to construct the weight matrix. Indeed, we take advantage
of geometrical structure of data space by finding a part-based
representation space in which improves significantly the cluster-
ing results as mentioned later. Now, we introduce the following
minimization problem for G-NBVD

PGN BV D : min
U≥0,S≥0,V≥0

||X−USVT ||F + λg Tr(VT BV)

(19)

where λg > 0 is the graph regularizer parameter and B is
the graph Laplacian matrix defined earlier in the problem of
PGN M F in (8). Our proposed G-NBVD algorithm constructs a
nearest neighbor graph to make the manifold structure in which
the weight matrix B is highly sparse. Hence, we may use the
multiplicative updating rules to solve PGN BV D which is very
efficient. The values of U and S are updated as in (16) and (17),
respectively. The values of V is updated as follows

V← V. ∗ (
XT US + λgWV

)
./

(
VST UT US + λgAV

)

(20)

Algorithm 1 summarizes our proposed G-NBVD method.

B. GSR-NBVD: Graph Regularizer for Sparse-Based
Robust NBVD

In this section, we propose our GSR-NBVD method through
the following three steps.

1) R-NBVD: Robust NBVD Method: To mitigate the impacts
of outliers and noises, we propose the following robust NBVD
problem through �2,1-norm approach

PRN BV D : min
U≥0,S≥0,V≥0

||X−USVT ||2,1 (21)

with the same dimensions of matrices described in PN BV D .
To solve the above problem (21), we use the multiplicative

updating rules [3] and obtain the following updates rules

U← U. ∗XDVST ./USVT DVST (22)

S← S. ∗UT XDV./UT USVT DV (23)

V← V. ∗DXT US./DVST UT US (24)

where the diagonal matrix D is defined by

Dii =
1√∑L

j=1(X−USVT )2
j i

, i = 1, . . . , P (25)

or equivalently

Dii =
1

||X:,i −USVT
:,i ||

, i = 1, . . . , P (26)

where Z:,i denotes the i-th column of matrix Z.
2) SR-NBVD: Sparse-Based Robust NBVD: To address the

sparse property of data, we enforce the sparse constraint on
the middle matrix S through the robust NBVD approach in
order to connect the feature matrix U to the coefficient matrix
V efficiently and propose the following sparse-based Robust
NBVD, called SR-NBVD problem,

PSRN BV D : min
U≥0,S≥0,V≥0

||X−USVT ||2,1 + λs ||S|| 1
2

(27)

where λs > 0 denotes the Lagrangian parameter and ||S|| 1
2

is
defined as in (6).

We solve the PSRN BV D problem in (27) using the multiplica-
tive updating rules where the values of U and V are updated as
in (22) and (24) respectively, and S is updated as follows

S← S. ∗UT XDV.

/(
UT USVT DV +

λs

2
S−

1
2

)
(28)

Indeed, adding the sparse constraint on the middle matrix of
the proposed model showed the better clustering performances
(i.e., in the most cases) during the extensive simulations over
different data sets. We left theoretical discussion of how we may
connect the sparseness of the middle matrix with the clustering
performance as well as the structure of the possible outliers for
our future work.

3) GSR-NBVD: A Graph Regularizer for Sparse-Based Ro-
bust NBVD: We enhance our proposed sparse-based robust
NBVD method (SR-NBVD) mentioned in Section III-B2 by
preserving the graph structure of data which explained earlier
in Section III-A. To model our jointly Graph and Sparse-based
Robust NBVD, called GSR-NBVD, we propose the following
minimization problem

PGSRN BV D : min
U≥0,S≥0,V≥0

C(X,U,S,V) (29)
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Algorithm 2: Pseudocode of the Joint Graph and Sparse-
based Robust Nonnegative Block Value Decomposition
Method (GSR-NBVD).

Input: data matrix X and parameters λs , λg , ε, Imax .
- Initialize U,S and V.
Repeat:
- Compute Cold = C(X,U,S,V) using (30).
- Update D using (25).
- Update U using (22).
- Update S using (28).
- Update V using (31).
- Compute Cnew = C(X,U,S,V) using (30).
- Stop if either |Cnew - Cold | / Cold < ε or the iteration

number exceeds Imax .
Output: The feature matrix U, the coefficient matrix V

and matrix S.

where its cost function is defined as follows

C(X,U,S,V) = ||X−USVT ||2,1

+ λs ||S|| 1
2

+ λg Tr(VT BV) (30)

where λs > 0 and λg > 0 are the constant parameters for the
sparse and graph regularization terms respectively and B is
the graph Laplacian matrix defined earlier in the problem of
PGN M F in (8).

The proposed problem is a general structure that can lever-
age the power of sparse-based robust NBVD (SR-NBVD) and
graph Laplacian regularization which leads to more degree of
freedom compared to the GNMF algorithm [33] and considers
the relations between the data points and features. Our pro-
posed GSR-NBVD can have more discriminating power than
the NBVD by preserving the graph structure and robustness
property through the �2,1-norm of modeling error.

To solve PGSRN BV D , we use the multiplicative updating
rules in which the values of U and S are updated as in (22) and
(28), respectively and the values of V is updated as follows

V← V. ∗ (
DXT US + λgWV

)
./

(
DVST UT US + λgAV

)

(31)

Our proposed GSR-NBVD method for data clustering is sum-
marized in Algorithm 2.

C. Convergence

In the first part, we show the convergence of our proposed
G-NBVD method that used the updating rules in (16), (17) and
(20) as follows.

Theorem 1: (i) The objective function of PGN BV D in (19)
using updating U in (16) monotonically decreases while fixing
S and V. (ii) Updating S using the rule of (17) while fixing U
and V, the objective function of (19) monotonically decreases.
(iii) Updating V using the rule of (20) while fixing U and S,
the objective function of (19) monotonically decreases.

Proof: See Appendix A for the proof. �

Then, the following theorem shows the convergence of R-
NBVD based on updating rules in (22), (23) and (24).

Theorem 2: (i) The objective function of PRN BV D in (21)
using updating U in (22) monotonically decreases while fixing
S and V. (ii) Updating S using the rule of (23) while fixing U
and V, the objective function of (21) monotonically decreases.
(iii) Updating V using the rule of (24) while fixing U and S,
the objective function of (21) monotonically decreases.

Proof: See Appendix B for the proof. �
Afterwards, we show the convergence proposed SR-NBVD

method thorough the updating rules in (22), (28) and (24).
Theorem 3: (i) The objective function in (27) using updating

U in (22) monotonically decreases while fixing S and V. (ii)
The objective function in (27) monotonically decreases using
updating S in (28) while fixing U and V. (iii) Updating V
using the rule of (24) while fixing U and S, the objective
function of (27) monotonically decreases.

Proof: See Appendix C for the proof. �
Finally, the following theorem shows the convergence of our

proposed GSR-NBVD method based on updating rules in (22),
(28) and (31).

Theorem 4: (i) The objective function of PGSRN BV D in (29)
using updating U in (22) monotonically decreases while fixing
S and V. (ii) Updating S using the rule of (28) while fixing U
and V, the objective function of (29) monotonically decreases.
(iii) Updating V using the rule of (31) while fixing U and S,
the objective function of (29) monotonically decreases.

Proof: See Appendix D for the proof. �
We must note that we replace zero values of matrices U,S

and V with a small positive value during the iterations to avoid
the zero-lock problem similar to one used in [42]. Also we must
mention that the convergence proofs show that the involved con-
straints are satisfied and the (existing) optimal solution have the
sparseness and robustness properties through the graph struc-
ture and �2,1-norm terms. We left the direct proof of robustness
property terms against outliers as our future work.

D. Complexity

The computational cost is an important issue for the clus-
tering, specifically for the large size of data samples with high
dimensions. In this subsection, we count the arithmetic oper-
ations per each iteration for the updating rules of NBVD and
our proposed methods of G-NBVD and GSR-NBVD. These op-
erations include three major floating-point-operations (FLOPs):
addition, multiplication, division and square-root and its inverse
(i.e. for calculating (.)

1
2 and (.)−

1
2 ).

We must note that the most of block value decomposition
updates of the proposed framework are identical or similar to
the corresponding NBVD model [35] and GNMF structure [33]
except computing matrix D. However, it can be computed effi-
ciently since it is diagonal and pretty sparse in the implementa-
tion. Therefore, the overall complexity follows the basic NBVD
model in [35].

Table I compares the computational costs of our two main
proposed methods with NMF and GNMF in terms of FLOPs
and the big O notation.
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TABLE I
COMPUTATIONAL OPERATION COUNTS FOR EACH ITERATION, IN TERMS OF A FLOATING-POINT-OPERATION (FLOP) AND SQUARE-ROOT AND ITS INVERSE, IN

NMF, GNMF, NBVD AND OUR PROPOSED METHODS

• The value of q comes from the Graph-based structure implementation that used a q -nearest neighbor graph to construct the sparse matrix W , see [33] for more details.
• The first two rows of table is recomputed which is compatible exactly with the computations in [33].
• The overall complexity of the last three methods is the order of LP K or LP N where the value of K and N is the same or a factor (by 2 or 0.5) of each other through our
extensive simulations for setting the dimension of S .

IV. EXPERIMENTS

A. Parameter Selection and Initialization

Our proposed GSR-NBVD framework has two types of pa-
rameters: the dimensions values K and N , the regularization
parameters for sparsity (λs) and graph regularizer (λg ). There is
not a unique prescription to select those parameters though some
methods have been studied for choosing regularizer parameters
[43]–[45] and dimensions [33], [35], [46].

In this paper, we propose to choose K and N as the factors of
clusters’ number (by assuming that it is known/given) as follows

K = αK × γ (32)

N = αN × γ (33)

where αK and αN are empirically obtained (depending the
types of data sets) and γ is the number of clusters. We selected
αK = αN = 1 for biological data set where this number is the
same as used in [35], αK = αN = 2 for text data sets and αN =
2αK = 3 for image data set throughout our experiments. We
choose the values of λs and λg by cross-validation in which the
majority of four metrics are maximized. Those values are in the
range of (0, 10] and (0, 105] for λs and λg , respectively, for all
types of data sets.

To initialize our methods, we may use random initialization
with standard normal distribution where maximized by 0.01 or
the similar approach introduced in [29]. In our experiments,
we use the similar approach proposed for robust �2,1-norm
NMF method in [29] for the initializations of matrices U,S
and V. First, a projection of original data set is produced by
PCA method with the dimension of 2×K. Then, we employ
K-means clustering method on the projected data to achieve the
clustering results, say Ṽ, and initialize V with Ṽ + c1 where
c1 is the first constant value. Afterwards, we obtain US matrix
by computing the cluster center for each category. Again, we
apply K-means clustering method on the obtained US matrix,
and initialize U with Ũ + c2 where c2 is the second constant
value. Finally, S is initialized by computing the clustering cen-
troid for each category of resulted US matrix. Empirically, we
run K-means 20 times during initializations.

We implement all of these methods over MATLAB platform,
on an Intel Core i7-4790 (at 3.6 GHz) and 16 GB of RAM.

B. Clustering Visualization

To visualize the effectiveness of our proposed G-NBVD and
three-step GSR-NBVD methods, we employ the IRIS dataset
[47], [48]. It contains 4 measures of 3 classes and 50 samples
per class. We use PCA [49] to project data to 2-D space as
shown in Figure 1(a)-left. The distribution of three classes are
displayed via different colors and shapes of markers. We apply
NBVD [35], the proposed G-NBVD and GSR-NBVD, step-by-
step, to the original IRIS data set and use K-means to obtain the
cluster index for each sample. The matched grouped classes are
shown with the same color and shapes (i.e. with larger markers).

We must note that for the clustering purpose using NBVD and
NMF families throughout the paper, we apply K-means cluster-
ing to the representation of data obtained by those methods.

As shown in Figure 1, we observe that G-NBVD and GSR-
NBVD methods group three different classes with the highest
accuracy (Figure 1(a)-right and (b)-right) compared with NBVD
shown in Figure 1(a)-middle. Furthermore, we observe that the
improvements of clustering during three steps of GSR-NBVD
approach as depicted in Figure 1(b), from left to right.

C. Robustness to Outliers

To verify the effectiveness of our proposed G-NBVD and
GSR-NBVD methods in the presence of outliers and corrup-
tions, we generate a dataset by combining the Columbia Object
Image Library (COIL-20) [50] which contains 20 objects of
32× 32 gray scale images and a number of face images se-
lected randomly from the Extended Yale Database [51]. We add
different number of face images (i.e., outliers) to COIL-20 in
the range of 5% to 40% of the number of samples in the original
data set (i.e., 1440 samples) by step of 1%. We call the added im-
ages as outliers and consider them as outlier category. Thus, the
corrupted data set has the number of (1 + (5% to 40%))× 1440
samples with 21 clusters in total. In other words, we produce
36 noisy data sets with outliers where each contains a specified
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Fig. 1. Illustration of clustering over IRIS data set through NBVD, proposed G-NBVD and three-steps clustering method: R-NBVD, SR-NBVD and GSR-NBVD,
the similar shapes and colors confirm the correct clustering data points.

number of outliers. Then, we measure the accuracy of different
clustering methods.

First, we show the outliers detection accuracy of our proposed
G-NBVD and GSR-NBVD methods and several state-of-the-art
clustering methods as shown in Figure 2(a)-left. We observe that
G-NBVD and GSR-NBVD and GNMF clustering methods out-
performs the other clustering methods for the outliers between
5% to 20% with the accuracy range of 90% to 76%. Then, the
accuracy of proposed G-NBVD method decreases smoothly in
the range of 20% to 40% of outliers with the higher accuracy
results compared with the other methods. Second, we show the
accuracy results of two selected classes of COIL-20 in the pres-
ence of outliers in Figures 2(a)-middle and Figures 2(a)-right.
We observe that both proposed methods outperform the other
methods. In particular, GSR-NBVD and G-NBCD keep the
clustering accuracy of the class-3 of COIL-20 with around
58% from 5% to 18% and 55% from 5% to 27% outliers,
respectively.

Moreover, we show the performance of clustering methods
over corrupted data sets mentioned above through different clus-
tering metrics including the clustering’s accuracy, purity and
ARI as given in equations (34), (38) and (39), respectively. The
main observations are as follows:

� The proposed GSR-NBVD has the highest average cluster-
ing accuracy form 5% to 27% of outliers compared with
the other methods and the performance is falling down

sharply when outliers are more than 27% as shown in
Figure 2(b)-left.

� The proposed G-NBVD has the second highest accuracy
from 5% to 27% of outliers and has the first rank of average
accuracy after that as shown in Figure 2(b)-left.

� Both GSR-NBVD and G-NBVD have the highest purity
results with the first and the second rank, respectively as
shown in Figure 2(b)-middle. Moreover, G-NMF meets
the purity performance of G-NBVD from 20% of outliers.

� The proposed GSR-NBVD has the highest ARI with
around 73% form 5% to 26% of outliers and this metric
is falling down sharply when outliers are increased from
26% as shown in Figure 2(b)-right.

� The proposed G-NBVD has the best ARI from 26% to
40% of outliers compared with the other methods and has
the second rank from 5% to 26% of outliers as shown in
Figure 2(b)-right.

D. Results on Real Data Sets

1) Data Sets Description: We select eight different real-
world data sets from document, image and biological data sets
as follows

� CSTR consists of the abstracts of technical reports in 4
research topics published in the Department of Computer
Science at Rochester University between 1991 and 2002
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Fig. 2. The clustering results as a function of added outliers (chosen from YALE data set) to original data set (COIL20) in percentages through different clustering
methods NMF, GNMF, NBVD, ONMTF, LRR and our proposed methods of G-NBVD and GSR-NBVD.

and used for text categorization and clustering binary data
in [52] and [53], respectively.

� k1a contains web pages in 20 subject directories of Yahoo!
and it is built for the WebACE project [54], included in the
CLUTO clustering toolkit [55].

� k1b is similar to k1a but more general directory hierarchy
with 6 document categories.

� re0 is the subset of standard Reuters-215785 dataset [56]
which consists of news articles on the Reuters newswire
in 1987 and contains 13 topics and used for co-clustering
in [40].

� re1 is another subset of Reuters-215785 dataset with 25
subjects and different size of instances and dimension [40].

� COIL20 contains 32× 32 gray scale images of 20 objects
viewed from varying angles.

� Ecoli is a multiclass classification dataset belongs to UCI
machine learning repository [57] including 8 attributes.

� movements contains 15 classes (out of 24 instances each)
and each class corresponds to a typical hand move-
ment [58].

Table II summarizes the characteristics of these data sets.
2) Measurements: We use four different metrics to measure

the quality of clustering including clustering accuracy (CA), nor-
malized mutual information (NMI), purity (PU), and adjusted
rand index (ARI). They are defined as follows.

CA is a measure to calculate how accurately samples are
grouped together. This measure needs clustering alignment and

TABLE II
DATASET INFORMATION

we use Monkres algorithm [59] to align the clustering results
and the ground truth to measure the clustering accuracy as

CA =

∑P
j=1 δ(cj , c̃j )

P
(34)

where P is total number of samples, cj is the ground truth cluster
and c̃j is matched cluster obtained by clustering algorithm.

NMI is a normalized mutual information between two sets
of clusters and does not require the alignment of the ground
truth and clustering results. By considering two cluster sets of
C and C̃ which are the set of ground truth and the one ob-
tained by clustering method respectively, and Ci and C̃j denote
two sets of documents belong to ground truth cluster i-th and
the obtained cluster of j-th, the mutual information (MI) is
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TABLE III
NUMERICAL CLUSTERING RESULTS (MEAN VALUES) FOR K-MEANS, NMF, GNMF, NBVD, ONMTF [40], LRR [17], SSC [16] AND OUR PROPOSED METHODS

OVER DIFFERENT DATA SETS IN TERMS OF FOUR METRICS: CLUSTERING ACCURACY, NORMALIZED MUTUAL INFORMATION, PURITY AND ADJUSTED RAND INDEX

defined by

MI(C, C̃) =
∑

i

∑

j

p(Ci, C̃j ) log2
p(Ci, C̃j )

p(Ci)p(C̃j )
(35)

or equivalently

MI(C, C̃) =
∑

i

∑

j

|Ci ∩ C̃j |
P

log2
P |Ci ∩ C̃j |
|Ci ||C̃i |

(36)

Then, NMI is defined as

NMI(C, C̃) =
MI

max(E(C), E(C̃)) (37)

where E(.) denotes the entropy function.
PU is used to measure how samples belongs to only one

cluster are grouped together and it is computed by

PU =
1
P

P∑

i=1

max
j
|ci ∩ c̃j | (38)

ARI is a modification of rand index (RI). RI measures the
agreement between two sets of labels and ARI considers the
agreement by chance as well, defined by

ARI =
(index)− (expected index)

max((index)− (expected index)
(39)

3) Clustering Results: In this experiment, we compare the
clustering results of NBVD-based frameworks (NBVD method
[35], the proposed G-NBVD and GSR-NBVD methods) with
the NMF-based methods (NMF [3] and GNMF [33]), K-means,
LRR [17] and SSC [16] as the benchmarks. We measure the
clustering results of all these methods through four mentioned
metrics: accuracy, purity, NMI and ARI.

Table III shows these results and the best and the second best
results are shown with underline-bold and underline-underline,
respectively.

The main results are summarized as follows:
� The proposed GSR-NBVD has the best clustering results

(all four mentioned metrics) over CSTR, k1b, COIL20
and movements data sets. Also, it outperforms the other
methods over re1 through average NMI, purity and ARI
and over re0 through average accuracy and ARI.

� The proposed G-NBVD has the second best clustering
performances over CSTR, k1b (except purity), k1a (except
NMI and ARI), re0 (except accuracy and NMI), re1 (except
accuracy), COIL20 and movements.

� The proposed G-NBVD and GSR-NBVD have the best
and the second best clustering results over Ecoli data set,
respectively.

� In general, the proposed GSR-NBVD and G-NBVD clus-
tering methods have the best clustering performances, in
21 and 6 cases, respectively, out of 32 possible cases over
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all 8 data sets. Moreover, they have the second best clus-
tering performances, in 4 and 22 cases, respectively, out of
32 possible cases.

In summary, we observe that our proposed algorithm out-
performs substantially the other co-clustering and clustering
algorithms in almost all cases, in term of four mentioned metric
values.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed two clustering methods based on
3-factorization matrices: a graph based NBVD and a robust
NBVD approach through jointly graph and sparse regularizers
for clustering. In our first proposed method, we used the geo-
metric properties of data along with NBVD framework called
G-NBVD. In the second proposed clustering method, we used
the �2,1-norm term to model the error that compensates the out-
liers effects. To improve our proposed R-NBVD, we investigated
the sparseness property over robust NBVD framework and en-
forced the � 1

2
-norm constrains on the connector matrix between

the feature and coefficient matrix. To have further enhancement
over SR-NBVD, we proposed to use graph representation of data
matrix and introduced our final GSR-NBVD model. To solve our
proposed minimization problems (i.e., both G-NBVD and GSR-
NBVD frameworks) at each step, we employed multiplicative
updating rules and proved the convergence through several the-
orems. The evaluations of our proposed methods over various
types of data sets affirmed the effectiveness of our proposed co-
clustering methods which outperformed several state-of-the-art
methods.

In our future works, we will investigate how to determine the
values of matrix dimensions where they have a linear relation
with the number of clusters currently. Also, the regularizers’ es-
timation is the other open problem. Furthermore, we are working
to find a theoretical approach for the possible boundary condi-
tions for the outliers that can be handled through our proposed
algorithms as well as the possible assumptions on the nature of
outliers such as sparseness property. Finally, the direct proof of
robustness against outliers/noises through the �2,1-norm is left
for our future work.

APPENDIX A
PROOF OF THEOREM 1

Proof: The proof of this theorem is similar to the proof of
theorems mentioned later for the robust based NBVD approach
by substituting D = 1 in all parts. For the proof of part (i), we
can follow Appendix B. For parts (ii) and (iii) , we use the
similar approach in Appendix C and Appendix D, respectively
and put λs = 0. �

APPENDIX B
PROOF OF THEOREM 2

Proof: (i) First, we show that the following cost function
monotonically decreases.

C(U) = Tr
(
(X−USVT )D(X−USVT )T

)
(40)

Let Sr and Vr be the old values of S and V on the right-hand-
side (RHS) of (23) and (24), respectively, Sr+1 and Vr+1 be the
new values of S and V on the left-hand-side (LHS) of (23) and
(24). So, we must show C(Ur+1) ≤ C(Ur ). Using the axillary
function approach in [3], Z(U, Û) is an auxiliary function of
C(U) if the following relations are satisfied

Z(U, Û) ≥ C(U), ∀Û , (41)

Z(U,U) = C(U). (42)

By defining

Ur+1 = argmin
U

Z(U,Ur ) (43)

we have

C(Ur+1) = Z(Ur+1 ,Ur+1) ≤ Z(Ur+1 ,Ur ) ≤ C(Ur )
(44)

So, this proves that C(Ur ) monotonically decreases.
Now, we show that the following function is an auxiliary

function of C(U)

Z(U, Û) = Tr
(
XDXT − 2UT XDVST

)

+
K∑

i=1

L∑

j=1

(ÛSVT DVST )ijU2
ij

Ûij

(45)

By rearranging the RHS of C(U) in (40) and using the fact that
the trace operator is invariant under cyclic permutations (i.e.
Tr(ABC) = Tr(CAB) = Tr(BCA)), we have

C(U) = Tr
(
XDXT − 2UT XDVST

+ UT USVT DVST
)

(46)

Then, by using the following matrix inequality [46]

Tr(GT AGQ) ≤
∑

i,j

(AĜQ)ij

G2
ij

Ĝij

(47)

where the matrices A,Q,G are nonnegative matrices with the
suitable dimensions and A = AT , Q = QT and the equality
holds if G = Ĝ, and setting A = 1, Q = SVT DVST , G = U
and Ĝ = Û, then the third term of (46) is always smaller than
or equal to the third term of (45). The equality holds if U = Û.
Thus, Z(U, Û) of (45) is an auxiliary function of cost function
C(U) in (46).

To find the global minima of (45), let f(U) = Z(U, Û), then

∂f(U)
∂Uij

= −2XDVST + 2
(ÛSVT DVST )ijUij

Ûij

(48)

and the Hessian matrix (the second order derivatives) is

∂2f(U)
∂Uij ∂Ukl

=
(

2
(ÛSVT DVST )ij

Ûij

)
δjlδik (49)

Hence, the Hessian matrix is semi-positive which implies that
the function f(U) is a convex function and it has a unique global
minima. It is obtained by setting the LHS of (48) to zero that
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gives

Uij = Ûij
(XDVST )ij

(ÛSVT DVST )ij

(50)

The above equation recovers the updating rule for U in (22)
by replacing Ur+1 ← U and Ur ← Û. Thus, the objective
function C(U) in (40) is nonincreasing monotonically under
the updating rules (50).

Second, we show that the following inequation holds under
the update rule of (22).

||X−Ur+1SVT ||2,1 − ||X−UrSVT ||2,1

≤ 1
2
(
C(Ur+1)− C(Ur )

)
(51)

where C(U) is defined in (40).
We rewrite C(Ur+1) and C(Ur ) as follows, respectively:

C(Ur+1) = Tr
(
(X−Ur+1SVT )D(X−Ur+1SVT )T

)

=
P∑

i=1

L∑

j=1

(X−Ur+1SVT )2
j iDii

=
P∑

i=1

||X:,i −Ur+1SVT
:,i ||2Dii (52)

C(Ur ) = Tr
(
(X−UrSVT )D(X−UrSVT )T

)

=
P∑

i=1

L∑

j=1

(X−UrSVT )2
j iDii

=
P∑

i=1

||X:,i −UrSVT
:,i ||2Dii (53)

Then, the RHS of (51) becomes

1
2
(
C(Ur+1)− C(Ur )

)
=

1
2

P∑

i=1

(
||X:,i −Ur+1SVT

:,i ||2Dii − ||X:,i −UrSVT
:,i ||2Dii

)

=
1
2

P∑

i=1

(
||X:,i −Ur+1SVT

:,i ||2Dii − 1
Dii

)
(54)

where we use the definition of diagonal matrix D in (26) by
replacing U with Ur in the last relation of (54).

Also, we rewrite the LHS of (51) as follows

||X−Ur+1SVT ||2,1 − ||X−UrSVT ||2,1

=
P∑

i=1

(
||X:,i −Ur+1SVT

:,i || − ||X:,i −UrSVT
:,i ||

)

=
P∑

i=1

(
||X:,i −Ur+1SVT

:,i || −
1

Dii

)
(55)

Thus, by subtracting (55) from (54)

P∑

i=1

(
||X:,i −Ur+1SVT

:,i ||

− 1
2
||X:,i −Ur+1SVT

:,i ||2Dii − 1
2Dii

)

=
P∑

i=1

−Dii

2

(
||X:,i −Ur+1SVT

:,i ||2

− 2||X:,i −Ur+1SVT
:,i ||

1
Dii

+
1

D2
ii

)

=
P∑

i=1

−Dii

2

(
||X:,i −Ur+1SVT

:,i || −
1

Dii

)2

≤ 0 (56)

and this ensures that (51) holds. Thus the value of RHS (51)
must be negative or zero. Then

||X−Ur+1SVT ||2,1 − ||X−UrSVT ||2,1 ≤ 0 (57)

Consequently, the objective function of (21) monotonically de-
creases using updating U in (22) while fixing S and V.

We could follow the same procedure mentioned in the next
Appendices to prove parts (ii) and (iii) of Theorem 2 by
letting λs = 0 and λg = 0, respectively, in Appendix C and
Appendix D. �

APPENDIX C
PROOF OF THEOREM 3

Proof: The first part (i) is easily proved based on the the
proof of updating rules for U in Appendix B. Then, we follow
the same procedure mentioned earlier in Appendix B and using
the new auxiliary function and some manipulations to prove part
(ii) which explained as follows.

First, we rewrite the objective function of (27) as the following
S-dependent cost function

C(S) = Tr
(
(X−USVT )D(X−USVT )T

)

+ λs

K∑

i=1

N∑

j=1

|sij | 12 (58)

Then, we show that the following function is an auxiliary func-
tion of C(S)

Z(S, Ŝ) = Tr
(
XDXT − 2XDVST UT

)
+ λs

K∑

i=1

N∑

j=1

|sij | 12

+
K∑

i=1

N∑

j=1

(UT UŜVT DV)ijS2
ij

Ŝij

(59)
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Now, we show that the required conditions of an auxiliary func-
tion must be satisfied as follows

Z(S, Ŝ) ≥ C(S), ∀Ŝ, (60)

Z(S,S) = C(S). (61)

We can rewrite the RHS of (58) as follows

C(S) = Tr
(
XDXT − 2XDVST UT

)
+ λs

K∑

i=1

N∑

j=1

|sij | 12

+ Tr(USVT DVST UT ) (62)

Using the matrix inequality of (47) and assigning A = UT U,
Q =VT DV, G = S and Ĝ = Ŝ, we see that the forth term
of (62) is always smaller than or equal to the forth term of (59)
and the equality holds if S = Ŝ .Thus, Z(S, Ŝ) in (59) is an
auxiliary function of C(S) in (58).

Now, we construct the first and second order derivatives of
(59) to find its global minimia. Let f(S) = Z(S, Ŝ), so

∂f(S)
∂Sij

= −2UT XDV +
λs

2
S−

1
2

ij + 2
(UT UŜVT DV)ijSij

Ŝij

(63)

and the Hessian matrix is

∂2f(S)
∂Sij ∂Skl

=
1
4

(
− λsS

− 3
2

ij + 8
(UT UŜVT DV)ij

Ŝij

)
δjlδik

(64)

By choosing the appropriate values of λs , (64) will be semi-
positive, and hence, Z(S, Ŝ) in (59) has a unique global minima
which obtained by

Sij = Ŝij
(UT XDV)ij

(UT UŜVT DV + λs

2 S
1
2 )ij

(65)

By replacing Sr+1 ← S and Sr ← Ŝ in (65), it is easy to show
that C(S) in (58) is monotonically nonincreasing under the
update rule of (28).

In the next step, we need to show that

||X−USr+1VT ||2,1 − ||X−USrVT ||2,1

≤ 1
2
(
C(Sr+1)− C(Sr )

)
(66)

where C(S) is defined in (58).
We can prove this by showing that the RHS of (66) is negative

or zero which the steps of the proof are similar to the second
part of Appendix B and we skip them. �

APPENDIX D
PROOF OF THEOREM 4

Proof: We follow the same procedure mentioned earlier in
Appendix B and Appendix C to prove all parts of theorem. Since
the second and the third terms of (30) depends on S and V, we
have exactly the same update rule as in R-NBVD and the proof
is similar. For the second part of Theorem, we have the similar
procedure as in Theorem 3 and it is skipped. We prove the

third part of Theorem by defining the following V-dependent
cost function (by removing the second part of original objective
function of GSR-RNBVD in (30)

C(V) = Tr
(
(X−USVT )D(X−USVT )T

+ λgVT BV
)

(67)

Then, we show that the following function is an auxiliary func-
tion of C(V)

Z(V, V̂) = Tr
(
XDXT − 2XDVST UT + λgVT BV

)

+
P∑

i=1

N∑

j=1

(DV̂ST UT US)ijV2
ij

V̂ij

(68)

Again we have to show that the following conditions are satis-
fied:

Z(V, V̂) ≥ C(V), ∀V̂ , (69)

Z(V,V) = C(V). (70)

The RHS of (67) can be written as

C(V) = Tr
(
XDXT − 2XDVST UT + λgVT BV

+ VT DVST UT US
)

(71)

By using the matrix inequality mentioned in (47) and assigning
A = D, Q = ST UT US, G = V and Ĝ = V̂, we see that the
forth term of (71) is always smaller than or equal to the forth
term of (68). Therefore, Z(V, V̂) in (68) is an auxiliary function
of C(V) in (71).

Then, we construct the first and second order derivatives of
(68) to find its global minimia. Let f(V) = Z(V, V̂), so

∂f(V)
∂Vij

= −2DXT US + 2λgBV + 2
(DV̂ST UT US)ijVij

V̂ij

(72)

and the Hessian matrix is

∂2f(V)
∂Vij ∂Vkl

= 2
(

λgB +
(DV̂ST UT US)ij

V̂ij

)
δjlδik (73)

Since (73) is semi-positive, Z(V, V̂) in (68) has a unique global
minima which obtained by

Vij = V̂ij
(DXT US + λgWV)ij

(DV̂ST UT US + λgAV))ij

(74)

where B is already substituted by A−W. So, the updating
rule V in (31) is recovered by (74) by exchanging Vr+1 ← V
and Vr ← V̂ where it confirms C(V) in (67) is monotonically
nonincreasing under the update rule (74).

Similar to the second part of Appendix B, we can easily show
that the following inequation holds under the update rule of (31)

||X−US(Vr+1)T ||2,1 − ||X−US(Vr )T ||2,1

≤ 1
2
(
C(Vr+1)− C(Vr )

)
(75)

where C(V) is defined in (67). Indeed, we could show that the
RHS of (75) is negative or zero that completes the proof. �
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