
IEEE COMMUNICATIONS LETTERS, VOL. 22, NO. 12, DECEMBER 2018 2447

Multiple-Step-Ahead Traffic Prediction in High-Speed Networks

Abdolkhalegh Bayati , Kim Khoa Nguyen , and Mohamed Cheriet

Abstract— Traffic in high-speed networks shows distinct pat-
terns at different timescales. This characteristic should be taken
into account to address the error propagation in the multiple-
step-ahead traffic prediction. Based on this idea, we proposed
an algorithm in which traffic is modeled at different timescales
using Gaussian process regression (GPR). The prediction at a
timescale is made using the data of that timescale as well as the
prediction results at larger timescales. Experiments performed on
two public traffic data sets show that our algorithm has lower
error propagation than other algorithms, including ARIMA,
FARIMA, LSTM, and Convolutional LSTM.

Index Terms— Communication system traffic, traffic predic-
tion, time-series prediction, Gaussian process regression.

I. INTRODUCTION

IN multiple-step-ahead traffic prediction, the goal is to
predict the traffic performance measures (e.g., bandwidth,

packet loss, and latency) forward in time, up to a particular
horizon. A long horizon reveals traffic fluctuations in future
steps and gives enough time to take proper decisions. However,
it may also lead to traffic fluctuation in future steps. In the
high-speed network management, there are many situations
in which immediate changes in the network are expensive or
not feasible. For example, the time required for establishing
a wavelength (or lambda) in optical networks is often in the
order of minutes, so it cannot be done instantly. Multiple-step-
ahead traffic forecasting provides sufficient time for proactive
management in such situations.

Two common strategies for multiple-step-ahead time-series
prediction are iterative (or naive) and direct (or parallel)
methods [1]. In the iterative approach, multiple-step-ahead
time-series forecasting is achieved by making a repeated one-
step-ahead prediction where the outputs in consecutive steps
are used as the input for the next forecasting step [2]. The
recursive one-step-ahead prediction can be repeated up to a
required time horizon, and only a single forecasting model is
used [3]. As its main drawback, the accumulation of prediction
errors in the prior steps raises as the forecast horizon increases.
On the other hand, in the direct approach, H different models
are trained in parallel to perform H-step-ahead time-series
forecasting where the learner h (1 ≤ h ≤ H) predicts the
h-th step-ahead value. The direct method requires H separate
models to be trained and its time horizon is limited to H .
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Our experimental results reveal that the traditional strategies
fail to achieve an accurate prediction of high-speed traf-
fics because they do not consider the traffic characteristics.
Indeed, traffic of a high-speed link exhibits different patterns
at different time-scales [4]. For example, at the small time-
scales, traffic behavior is protocol dependent (e.g., TCP, UDP,
HTTP) [5]. On the other hand, at the time-scale of hours, traf-
fic samples represent the humans’ daily activities. Also, traffic
exhibits Long-Range Dependency (LRD) at large time-scales,
but it has Short-Range Dependency (SRD) at small time-
scales [5]. The traffic behavior at a time-scale is determined
by a particular set of factors corresponding to that time-scale.
This traffic characteristic is beneficial for multiple-step-ahead
prediction. Consider three traffic samples which have been
captured at time-steps 7:00 AM, 7:05 AM, and 8:00 AM when
the sampling time-scale is 5 minutes. Now consider the factors
that define the traffic behavior at the time-scale of 1 hour
(e.g., humans’ activity). The states of these factors are almost
the same from 7:00 AM to 7:05 AM, however they change
supposedly from 7:00 AM to 8:00 AM. In other words, for
one-step-ahead prediction at 7:00 AM, the traffic behavior at
higher time-scales can be ignored. However, for 12-step-ahead
prediction at 7:00 AM (i.e., to predict 8:00 AM), the models of
traffic behavior at higher time-scales are required. This traffic
property should be taken into account in prediction algorithm.

Different algorithms have been used for traffic prediction
including ARIMA [6], Artificial Neural Network [7], etc.
In [8], Gaussian Process Regression (GPR) has been shown
to be a powerful tool for single-step traffic prediction which
can handle the traffic self-similarity and periodicity. This
work enhances [8] by introducing a new multiple-step-ahead
traffic prediction algorithm based on GPR. GPR framework
allows studying the error propagation in the multiple-step
prediction [3]. The proposed algorithm consists of H GPR
experts where the expert fh captures the traffic behavior at
time-scale h (1 ≤ h ≤ H). The prediction results of expert
fh are used to correct the prediction of the models at the
smaller time-scales.

The algorithm is explained in Section II. Sections III and IV
present the results and conclusion respectively. Throughout
this letter, subscripts denote the index of variables (in vectors),
and superscripts determine the time-scale. Also, the vectors are
presented using boldface variables.

II. ALGORITHM

A. Gaussian Process Regression (GPR)
A Gaussian process [8] is a set of random variables such

that any subset of them has a joint Gaussian distribution.
GPR provides the mapping function between the input
X = {xi} and (continuous) output Y = {yi}. Given the
traffic samples t = {ti| 0 ≤ i < n}, the feature vector
xi is a d dimensional vector created from time-series data
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(i.e., xi = [ti−1, ti−2, . . . , ti−d]), and yi = ti. Consider n
pairs of input and noisy output observations, D = {(xi, yi)|i =
1, 2, . . . , n}, and the unknown mapping function f(xi):

yi = f(xi) + εi, (1)

where εi ∼ N (0, σ2) is the independent Gaussian noise, and
the function f(X) ∼ GP(m(X), k(xi,xj ; θ)) is defined with
mean m(X), covariance k(xi,xj ; θ), and hyperparameters θ.

The goal is the prediction of target value y∗ for new input
data x∗ which does not belong to the dataset D. The GP
assumption implies that joint distribution of the observed
target values Y and the function value at x∗ is a Gaussian
distribution: [

Y
f∗

]
∼ N

(
0,

[
K + σ2I K∗

K�
∗ k∗

])
, (2)

where f∗ = f(x∗) and k∗ = k(x∗,x∗; θ). The element K is
called covariance matrix of X and denotes a n× n matrix of
the covariance values evaluated for all pairs in the input data,
i.e., [K]ij = k(xi,xj ; θ). The element K∗ is a n × 1 matrix
for which [K∗]i = k(xi,x∗; θ). The conditional distribution
f∗|D,x∗, θ ∼ N (

f̂∗, v̂∗
)

leads to the mean and variance:

f̂∗ = K�
∗ (K + σ2I)−1Y, (3)

v̂∗ = k∗ − K�
∗ (K + σ2I)−1K∗. (4)

In this work, t is defined as the first difference of the
bandwidth time-series:

ti = bi − bi−1, (5)

where bi is the traffic bandwidth (measured in Bps) at time i.
So, each traffic sample shows the difference of the monitored
traffic bandwidth at two consecutive intervals. As the differ-
ence operator in Equation (5) removes trends in the traffic
time-series, the mean function m(X) can be taken to be zero.

B. Multiple-Step-Ahead Prediction
Our algorithm analyzes the traffic data at H time-scales and

builds a GPR model for each time-scale. The traffic samples at
each time-scale are calculated using the aggregate operation.
The aggregated process of t = {ti| 0 ≤ i < n} at the
aggregation level h is called th = {thi | 0 ≤ i < nh} which
is calculated by partitioning t into non-overlapping blocks of
size h and calculating the sum of the blocks [5]:

thi =
(i+1)h∑
j=ih+1

tj , (6)

nh =
⌊n

h

⌋
. (7)

Aggregated process t1 is the same as the original process t.
1) Training: Using aggregated versions of the traffic,

H datasets are created where the dataset Dh = {(xh
i , yh

i )} is
employed to train the GPR model fh. The (d+1)-dimensional
feature vector and the output for Dh (1 ≤ h < H) are:

xh
i = [wh

i , thi−1, t
h
i−2, . . . , t

h
i−d], (8)

yh
i = thi , (9)

wh
i =

(i+1)h+1∑
j=ih+1

tj , (10)

Fig. 1. Traffic aggregation at level 4. The time-series t is the first difference
of the traffic bandwidth. The time interval between samples is 5 minutes.

where wh
i is the next step of the traffic at aggregation

level h + 1. Figure 1 illustrates the traffic aggregation and the
feature selection at aggregation level 4. The only exception is
the dataset DH for which:

xH
i = [tHi−1, t

H
i−2, . . . , t

H
i−d] (11)

which does not include any sample from the higher aggrega-
tion level.

For creating the dataset Dh with size n, (n + d − 1) × h
traffic samples are required. Since DH requires the maximum
number of traffic samples, the total number of traffic samples
needed for creating the training data is (n + d − 1) × H .

The time complexity of standard GPR algorithm is O(n3)
where n is the number of the training samples [3]. The
proposed algorithm consists of H GPR experts that are trained
separately; so, its time complexity is O(H ×n3). Since, H is
a constant and H � n, the complexity of the proposed
algorithm is the same as standard GPR.

2) Prediction: The prediction phase includes two steps as
presented in Figure 2: (i) single-step prediction at all the
aggregation levels, and (ii) iterative predictions using f1.

In step 1, model fh predicts value yh
∗ given the input xh

∗ .
However, the input xh

∗ includes wh
∗ which is unknown at

the time of prediction. Considering Equations (8) and (10),
wh

∗ and th+1
∗ include the sum of the same traffic samples ti at

the prediction time, so they have the same value. According to
Equation (9), yh+1∗ is the predicted value for th+1∗ . Therefore,
the value wh

∗ can be estimated as:

wh
∗ = yh+1

∗ . (12)

The feature vectors in DH do not include wH
i . Thus, the model

fH does not require the prediction results at the higher
aggregation level, and its prediction is based on only the
samples from aggregation level H . Model fH provides yH

∗ ,
the single-step-ahead prediction at aggregation level H . This
predicted value is used instead of wH−1∗ in xH−1∗ which is
the input to fH−1 to predict yH−1

∗ . This process is repeated in
step 1 from model fH−1 to f1. The results is Y∗ = {yh

∗ | h =
1, 2, . . . , H} which is utilized in step 2.

In step 2, the multiple-step-ahead predictions are achieved
by iterative single-step estimations using f1. For ts+h, the
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Fig. 2. The workflow model of the prediction algorithm.

h − 1 previous predicted values and Y∗ are required. The
feature vector x1

s+h is defined as:

x1
s+h = [w1

s+h, y1
s+h−1, y

1
s+h−2, . . . , y

1
s+h−d], (13)

where w1
s+h is estimated based on the values in Y∗:

w1
s+h = yh+1

∗ − yh−1
∗ . (14)

The value w1
s+h has a crucial role in the algorithm.

It conveys the knowledge about the traffic behavior at longer
time-scales to f1. In the following section, the importance and
role of w1

s+h have been analyzed.

C. Importance of w1
s+h in the Feature Vector

The features in x1
s+h do not contribute evenly to the predic-

tion results. In a machine learning problem, feature importance
measures the role of a feature in the prediction accuracy.
Generally, the correlation between a feature and the target
value in a prediction problem reveals the feature importance.
According to the traffic autocorrelation function (ACF), it can
be shown y1

s+h−1 and w1
s+h are the most important features

in x1
s+h. By definition, the traffic ACF satisfies [9]:

ρ(r) ∼ cr−β , (15)

where c is a constant. Traffic shows LRD if 0 < β < 1, and
SRD if 1 < β < 2. In both cases, ACF decreases as the time
lag between traffic samples increases:

0 ≤ r ≤ q ⇒ cov(ts, ts+r) ≥ cov(ts, ts+q). (16)

According to (16), the importance of ts+r as a feature for the
prediction of ts is greater than ts+q . Equation (15) indicates
the importance of a feature in x1

s+h drops exponentially as the
time lag between the element and the target value increases.

D. Effect of w1
s+h on the Error Propagation

In the proposed algorithm, the predicted value at time-step
h is used as one of the input features for forecasting the next
time-steps. So, the error in prediction at time-step h (or the
uncertainty in the feature vector) is propagated through the
forecasts at next time-steps. It means the error propagation is
reduced as the input uncertainty is minimized. This section
illustrates w1

s+h reduces the uncertainty of the input feature
vector and thus, lowers the error propagation.

First, the prediction uncertainty has to be formulated which
can be done based on the predictive variance. Assume x1

s+h as
a random point with distribution N (m(x1

s+h), v(x1
s+h)) where

v(x1
s+h) is a (d+1)×(d+1) matrix. The Gaussian assumption

for x1
s+h allows the analytical approximation for the predictive

variance of y1
s+h [3]:

v(y1
s+h) = vm(x1

s+h) + Vh, (17)

Vh = Tr

{
v(x1

s+h)
(
1
2

∂2v̂
x1

s+h

∂x1
s+h∂x1

s+h
� +

∂f̂
x1

s+h

∂x1
s+h

∂f̂
x1

s+h

�

∂x1
s+h

)}
.

(18)

The predictive variance v(y1
s+h) is the sum of two terms

(i) vm(x1
s+h), and (ii) Vh. The first term is the GPR prediction

uncertainty for input m(x1
s+h) shown in (4). This term is larger

at the inputs that are not similar (or close) to the training
data compared to the point which are nearby the training data.
The second term (in predictive variance) contains the variance
(or uncertainty) of x1

s+h. This term is equal to zero when
the input is not a random point. As the number of random
elements in x1

s+h raises, the value of Vh increases. So, the
uncertainty of x1

s+h is expected to be more than uncertainty
of x1

s+h−1. Accordingly, v(y1
s+h) is expected to be greater

than v(y1
s+h−1). This shows the errors are accumulated in

y1
s+hs as iterative prediction goes further ahead in time.

The level of uncertainty of w1
s+h is independent of the

prediction time-step. Because, w1
s+h is the result of single-step

predictions the second term of its predictive variance is equal
to zero. Therefore, employing w1

s+h as a feature decreases the
uncertainty of the feature vector.

III. EXPERIMENTAL RESULTS

We performed our experiments on two well-known traffic
datasets: (i) CAIDA Anonymized Internet Traces from 2008
to 2015 [10], and (ii) Abilene Network traffic data from
2007−01−01 to 2007−10−14 [11]. Abilene dataset has been
used for prediction on the long time-steps (i.e., 5 minutes),
and CAIDA dataset has been used for prediction on short
time-steps (i.e., 30 seconds). In the experiment, each dataset
has been divided into two non-overlapped subsets. The first
subset has been used for the model selection (i.e., selecting
the optimal size of the training set, and the optimal number
of features d) for each algorithm using a cross-validation
process. The second subset has been divided into 100 portions,
and each portion has been employed to create a pair of the
non-overlapped train and test sets (random train-test split).
For each pair, the models have been fitted on the train set
and then, evaluated on the test set. The reported results are
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Fig. 3. 10-steps ahead prediction on the Abilene network traffic data (the
time lag between steps is 5 minutes).

the average of 100 prediction error measurements which have
been achieved from this process.

We compared our model with four multiple-step-ahead
prediction algorithms: ARIMA, FARIMA, Long Short-Term
Memory (LSTM) network, and Convolutional LSTM net-
work [12]. ARIMA and FARIMA are two well-known time-
series models. LSTM and Convolutional LSTM are results
of recent advances in the deep learning algorithms. LSTM
is a type of Recurrent Neural Networks (RNN), and Convo-
lutional LSTM is based on the fully connected LSTM [12].
We employed the Rational Quadratic covariance function in
our model because of its ability to capture traffic characteris-
tics [8]. LSTM and Convolutional LSTM have been imple-
mented as multivariate predictors. The number of units
(or neurons) in the LSTM layer, and the order of ARIMA
have been determined through the model selection. The order
of FARIMA has been determined by maximum likelihood
estimation.

The prediction error has been measured based on normal-
ized mean-square error (NMSE):

NMSE =
1

σ2N

N∑
i=1

(t1i − y1
i )2 (19)

where N is the size of the test set and σ2 is the variance of t.
A value of NMSE = 0 corresponds to the perfect predictor.

Figure 3 illustrates the results of 10-steps ahead predic-
tion on traffic data from Abilene network. The time dif-
ference between prediction steps is 5 minutes. As shown,
the prediction accuracy of the iterative and direct method
is less than others. In the first 3 steps, LSTM, Convolu-
tional LSTM, and the proposed algorithm perform almost the
same. However, the increase in the prediction error of the
proposed algorithm is remarkably less than other models for
the next steps.

Figure 4 represents the results of the traffic forecasting at the
time-scale of 30 seconds using the traffic data from CAIDA.
It is clear that the prediction errors at time-scale 30 seconds
are bigger for all the algorithms compared to the prediction
at time-scale of 5 minutes. In both cases, the prediction
accuracy of the proposed model is higher than any other
algorithm.

Fig. 4. 10-steps ahead prediction on the CAIDA traffic data (the time lag
between steps is 30 seconds).

IV. CONCLUSION
In this work, we presented an algorithm for multiple-step-

ahead traffic prediction based on the GPR in which the multi-
scale traffic behavior is exploited to improve traffic prediction
and to reduce the error propagation. We analyzed the error
propagation in the proposed algorithm and showed that the
traffic modeling at higher time-scales is essential and effective
for an accurate multiple-step-ahead prediction. In the future
work, we will investigate to use the traffic data from the same
period of previous days. Also, we will employ the algorithm
to improve the resource and traffic management in networks.
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